Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass sensitivity, trace analysis

Oostdijk, J.P., Degenhardt, C.E., Trap, H.C., Langenberg, J.P. (2007). Selective and sensitive trace analysis of sulfur mustard with thermal desorption and two-dimensional gas chromatography-mass spectrometry. J. Chromatogr. A. 1150(1-2) 62-9. [Pg.834]

In inorganic chemistry, mixtures of metal ions in solution can be analyzed by electron-impact mass spectrometry. First the metal ions are complexed with an organic ligand (usually various substituted acetylacetonates) to form volatile metal chelates. If many metal ions are anticipated, the mixture is separated by GC and the separated fractions identified by mass spectrometry. Simple mixtures can be analyzed directly using the mass spectrometer. Because of the high sensitivity of mass spectrometry, trace analysis is possible. [Pg.473]

Another aspect of cost reduction would be solvent economy. The need to preferentially select inexpensive solvents and employ the minimum amount of solvent per analysis would be the third performance criteria. Finally, to conserve sample and to have the capability of determining trace contaminants, the fourth criterion would be that the combination of column and detector should provide the maximum possible mass sensitivity and, thus, the minimum amount of sample. The performance criteria are summarized in Table 1. Certain operating limits are inherent in any analytical instrument and these limits will vary with the purpose for which the instrument was designed. For example, the preparative chromatograph will have very different operating characteristics from those of the analytical chromatograph. [Pg.362]

Coupled LC-LC can separate high-boiling petroleum residues into groups of saturates, olefins, aromatics and polar compounds. However, the lack of a suitable mass-sensitive, universal detector in LC makes quantitation difficult SFC-SFC is more suitable for this purpose. Applications of multidimensional HPLC in food analysis are dominated by off-line techniques. MDHPLC has been exploited in trace component analysis (e.g. vitamin assays), in which an adequate separation for quantitation cannot be achieved on a single column [972]. LC-LC-GC-FID was used for the selective isolation of some key components among the irradiation-induced olefinic degradation products in food, e.g. dienes and trienes [946],... [Pg.555]

Complex matrixes typically cannot be analysed directly to obtain the selectivity and sensitivity required for most trace analysis applications. To circumvent this problem, solid-phase micro extraction techniques were used to preconcentrate analytes selectively prior to gas chromatography/ion trap mass spectrometry analysis. [Pg.413]

A stream-splitter may be used at the end of the column to allow the simultaneous detection of eluted components by destructive GC detectors such as an FID. An alternative approach is to monitor the total ion current (TIC) in the mass spectrometer which will vary in the same manner as the response of an FID. The total ion current is the sum of the currents generated by all the fragment ions of a particular compound and is proportional to the instantaneous concentration of that compound in the ionizing chamber of the mass spectrometer. By monitoring the ion current for a selected mass fragment (m/z) value characteristic of a particular compound or group of compounds, detection can be made very selective and often specific. Selected ion monitoring (SIM) is more sensitive than TIC and is therefore particularly useful in trace analysis. [Pg.116]

The application of SIMS, SNMS, SSMS and GDMS in quantitative trace analysis for conducting bulk material is restricted to matrices where standard reference materials (SRMs) are available. For quantification purposes, the well characterized multi-element SRMs (e.g., from NIST) are useful. In Table 9.5 the results of the analysis by SNMS and the RSCs (relative sensitivity coefficients) for different elements in a low alloy steel standard (NBS 467) are compared with those of SSMS. Both solid-state mass spectrometric techniques with high vacuum ion sources allow the determination of light non-metals such as C, N, and P in steel, and the RSCs for the elements measured vary from 0.5 to 3 (except C). RSCs are applied as a correction factor in the analytical method used to obtain... [Pg.261]

Multi-element trace analysis is an important prerequisite for the quality assurance of foodstuffs with respect to the characterization of non-essential, toxic and essential (nutrient) elements as pollutions or as mineral elements relevant to health. Contamination with heavy metals such as Cd, Pb or Hg has become a serious problem with increasing environmental (artificial) contamination e.g., due to industrial pollution. The increasing use of inorganic mass spectrometric techniques (especially of ICP-MS) in the analysis of foodstuffs for multi-element analysis of trace elements or the detection of selected elements and species at a low concentration level has resulted from advances in very sensitive and quantitative measurements of metals, metalloids and several non-metals, including their speciation. [Pg.381]

For a detector to be of use in quantitative analysis, the signal output should be linear with concentration for a concentration-sensitive detector and with mass for a mass-sensitive detector. Some detectors have an additional time constant purposely introduced to remove the high-frequency noise. This should always taken into consideration, since a slow detector response can significantly broaden and attenuate chromatographic peaks relative to those actually sensed. Moreover, a versatile detector should have a wide linear dynamic range so that major and trace components can be determined in a single analysis, over a wide concenua-tion range. [Pg.696]

Methods for the analysis of organic and organometallic compounds are discussed in this chapter. It has become evident that for the analysis of these two classes of compounds, the analyst can draw on a very similar repertoire of analytical techniques with respect to sample preparation, separation, and detection. Chromatographic and, in particular, hyphenated techniques are the workhorses of environmental water analysis. The various formats and technical realizations of mass spectrometers are the most versatile detectors. Their sensitivity and ability to provide structural information at the low and even sub-pg level are an asset and at the same time a prerequisite for (ultra)trace analysis in the aquatic environment. As further significant improvements in detector sensitivity are unlikely, the probable focus of attention in the future will again be on sample preparation. Here, the introduction of new approaches, techniques, and materials for sample preparation can be expected to make a significant impact in this field. [Pg.342]


See other pages where Mass sensitivity, trace analysis is mentioned: [Pg.19]    [Pg.416]    [Pg.201]    [Pg.464]    [Pg.506]    [Pg.125]    [Pg.629]    [Pg.144]    [Pg.566]    [Pg.140]    [Pg.87]    [Pg.210]    [Pg.25]    [Pg.16]    [Pg.113]    [Pg.121]    [Pg.127]    [Pg.145]    [Pg.153]    [Pg.155]    [Pg.189]    [Pg.263]    [Pg.268]    [Pg.269]    [Pg.272]    [Pg.282]    [Pg.340]    [Pg.385]    [Pg.395]    [Pg.396]    [Pg.379]    [Pg.389]    [Pg.486]    [Pg.674]    [Pg.125]    [Pg.629]    [Pg.155]   
See also in sourсe #XX -- [ Pg.111 ]




SEARCH



Mass Trace

Mass sensitive

Mass sensitivity

Sensitivity analysis

Trace analysis

© 2024 chempedia.info