Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass film model

The predictions of correlations based on the film model often are nearly identical to predictions based on the penetration and surface-renewal models. Thus, in view of its relative simphcity, the film model normally is preferred for purposes of discussion or calculation. It should be noted that none of these theoretical models has proved adequate for maldug a priori predictions of mass-transfer rates in packed towers, and therefore empirical correlations such as those outlined later in Table 5-28. must be employed. [Pg.604]

On tbe basis of tbe two-film model for mass transfer, and relating all efficiencies to gas-pbase concentrations (for convenience only a similar development can be made on tbe basis of bquid concentrations), point efficiency can be expressed in terms of transfer units ... [Pg.1381]

The data plotted in the figure clearly support the predicted positive dependence of crystal size on agitation rate. Precipitation in the crystal film both enhances mass transfer and depletes bulk solute concentration. Thus, in the clear film model plotted by broken lines, bulk crystal sizes are initially slightly smaller than those predicted by the crystal film model but quickly become much larger due to increased yield. Taken together, these data imply that while the initial mean crystal growth rate and mixing rate dependence of size are... [Pg.239]

In a process where mass transfer takes place across a phase boundary, the same theoretical approach can be applied to each of the phases, though it does not follow that the same theory is best applied to both phases. For example, the film model might be applicable to one phase and the penetration model to the other. This problem is discussed in the previous section. [Pg.619]

Using a steady-state film model, obtain an expression for the mass transfer rate across a laminar film of thickness /. in the vapour phase for the more volatile component in a binary distillation process ... [Pg.858]

The gas phase mass transfer coefficient for the absorption of ammonia into water from a mixture of composition NHj 20%, N2 73%, Hj 7% is found experimentally to be 0.030 m/s. What would you expect the transfer coefficient to be for a mixture of composition NH3 5%, N2 60%, Hj 35% All compositions are given on a molar basis. The total pressure and temperature are die same in both cases. The transfer coefficients are based on a steady-state film model and the effective film thickness may be assumed constant. Neglect the solubility of Ny and Hi in water. [Pg.859]

Surface Renewal Theory. The film model for interphase mass transfer envisions a stagnant film of liquid adjacent to the interface. A similar film may also exist on the gas side. These h5q>othetical films act like membranes and cause diffu-sional resistances to mass transfer. The concentration on the gas side of the liquid film is a that on the bulk liquid side is af, and concentrations within the film are governed by one-dimensional, steady-state diffusion ... [Pg.409]

We have undertaken a series of experiments Involving thin film models of such powdered transition metal catalysts (13,14). In this paper we present a brief review of the results we have obtained to date Involving platinum and rhodium deposited on thin films of tltanla, the latter prepared by oxidation of a tltanliua single crystal. These systems are prepared and characterized under well-controlled conditions. We have used thermal desorption spectroscopy (TDS), Auger electron spectroscopy (AES) and static secondary Ion mass spectrometry (SSIMS). Our results Illustrate the power of SSIMS In understanding the processes that take place during thermal treatment of these thin films. Thermal desorption spectroscopy Is used to characterize the adsorption and desorption of small molecules, In particular, carbon monoxide. AES confirms the SSIMS results and was used to verify the surface cleanliness of the films as they were prepared. [Pg.81]

GL 16] ]R 12] ]P 15] Using a simple thin-film model for mass transfer, values for the overall mass transfer coefficient were determined for both micro-channel processing and laboratory trickle-bed reactors [11]. The value for micro-reactor processing (fCL = 5-15 s ) exceeds the performance of the laboratory tool Ki a = 0.01-0.08 s ) [11, 12], However, more energy has to be spent for that purpose (see the next section). [Pg.622]

Usually, mass transfer in gas-liquid models is based on a film model (see Fig. 5.4-13). The rate of transfer of A from the gas bubble to the liquid, i.e. absorption of A in the liquid phase, equals ... [Pg.284]

It has been observed that under reaction conditions mass transfer is often significantly faster than would be expected based on the film model. This is modelled by introducing an enhancement factor, E. In case the concentration in the bulk liquid, ca, is zero, the rate of mass transfer of A now becomes ... [Pg.284]

For external mass transfer again a film model is usually applied ... [Pg.285]

This can be further integrated from the wall to the boundary layer thickness y = 8, where the component is at the bulk concentration Cj,. Substituting / = - o and k = D/o, the mass-transfer coefficient yields the stagnant film model [Brian, Desalination by Reverse Osmosis, Merten (ed.), M.I.T. Press, Cambridge, Mass., 1966, pp. 161-292] ... [Pg.39]

The boundary conditions for this early dissolution model included saturated solubility for HA at the solid surface (Cha ) with sink conditions for both HA and A at the outer boundary of a stagnant film (Cha = Ca = 0). Since diffusion is the sole mechanism for mass transfer considered and the process occurs within a hypothesized stagnant film, these types of models are colloquially referred to as film models. Applying the simplifying assumption that the base concentration at the solid surface is negligible relative to the base concentration in the bulk solution (CB CB(o)), it is possible to derive a simplified scaled expression for the relative flux (N/N0) from HPWH s original expressions ... [Pg.128]

The derivation and experimental verification of the MMHS model represented a significant accomplishment and a natural plateau for film models. To be sure, there are general criticisms of film models and more specific criticisms of the MMHS model [6], However, overall the MMHS model should be recognized as a robust but simply applicable model which serves to demonstrate how factors such as intrinsic solubility of the acid drug, ionization and pA of the drug, and concentration of the reactive base all contribute to increasing the dissolution rate and mass transfer. [Pg.131]

As an alternative to film models, McNamara and Amidon [6] included convection, or mass transfer via fluid flow, into the general solid dissolution and reaction modeling scheme. The idea was to recognize that diffusion was not the only process by which mass could be transferred from the solid surface through the boundary layer [7], McNamara and Amidon constructed a set of steady-state convective diffusion continuity equations such as... [Pg.131]

Other researchers used flow between two parallel plates as the experimental and theoretical system to incorporate diffusion plus convection into their dissolution modeling and avoid film model approximations [10]. Though they did not consider adding reactions to their model, these workers did show that convection was an important phenomenon to consider in the mass transfer process associated with solid dissolution. In fact, the dissolution rate was found to correlate with flow as... [Pg.132]

Although the pH-partition hypothesis and the absorption potential concept are useful indicators of oral drug absorption, physiologically based quantitative approaches need to be developed to estimate the fraction of dose absorbed in humans. We can reasonably assume that a direct measure of tissue permeability, either in situ or in vitro, will be more likely to yield successful predictions of drug absorption. Amidon et al. [30] developed a simplified film model to correlate the extent of absorption with membrane permeability. Sinko et al. [31] extended this approach by including the effect of solubility and proposed a macroscopic mass balance approach. That approach was then further extended to include facili-... [Pg.395]

In the treatment to follow, we first review the two-film model for gas-liquid mass transfer, without reaction, in Section 9.2.2, before considering the implications for ki-netics-in Section 9.2.3. [Pg.239]

Two-Film Mass-Transfer Model for Gas-Liquid Systems... [Pg.240]

Figure 9.4 Two-film model (profiles) for mass transfer of A from gas phase to liquid phase (no reaction)... Figure 9.4 Two-film model (profiles) for mass transfer of A from gas phase to liquid phase (no reaction)...
The rate expressions developed in this section for gas-liquid systems, represented by reaction 9.2-1, are all based on the two-film model. Since liquid-phase reactant B is assumed to be nonvolatile, for reaction to occur, the gas-phase reactant A must enter the liquid phase by mass transfer (see Figure 9.4). Reaction between A and B then takes place at some location within the liquid phase. At a given point, as represented in Figure 9.4, there are two possible locations the liquid film and the bulk liquid. If the rate of mass transfer of A is relatively fast compared with the rate of reaction, then A reaches the bulk liquid before reacting with B. Conversely, for a relatively fast rate of reaction ( instantaneous in the extreme), A reacts with B in the liquid film before it reaches the bulk liquid. Since the intermediate situation is also possible, we may initially classify the kinetics into three regimes ... [Pg.242]

Figure 9.7 shows concentration profiles schematically for A and B according to the two-film model. Initially, we ignore the presence of the gas film and consider material balances for A and B across a thin strip of width dx in the liquid film at a distance x from the gas-liquid interface. (Since the gas-film mass transfer is in series with combined diffusion and reaction in the liquid film, its effect can be added as a resistance in series.)... [Pg.247]

First, we must consider a gas-liquid system separated by an interface. When the thermodynamic equilibrium concentration is not reached for a transferable solute A in the gas phase, a concentration gradient is established between the two phases, and this will create a mass transfer flow of A from the gas phase to the liquid phase. This is described by the two-film model proposed by W. G. Whitman, where interphase mass transfer is ensured by diffusion of the solute through two stagnant layers of thickness <5G and <5L on both sides of the interface (Fig. 45.1) [1—4]. [Pg.1518]

For a more detailed analysis of measured transport restrictions and reaction kinetics, a more complex reactor simulation tool developed at Haldor Topsoe was used. The model used for sulphuric acid catalyst assumes plug flow and integrates differential mass and heat balances through the reactor length [16], The bulk effectiveness factor for the catalyst pellets is determined by solution of differential equations for catalytic reaction coupled with mass and heat transport through the porous catalyst pellet and with a film model for external transport restrictions. The model was used both for optimization of particle size and development of intrinsic rate expressions. Even more complex models including radial profiles or dynamic terms may also be used when appropriate. [Pg.334]

Rafler el al. [105] applied the two-film model to the mass transfer of different alkane diols in poly(alkylene terephthalate) melts and demonstrated a pressure dependency of the mass-transfer coefficient in experiments at 280 °C in a small 3.6L stirred reactor. They concluded that the mass-transfer coefficient kij is proportional to the reciprocal of the molecular weight of the evaporating molecule. [Pg.78]

Both the mass-transfer approach as well as the diffusion approach are required to describe the influence of mass transport on the overall polycondensation rate in industrial reactors. For the modelling of continuous stirred tank reactors, the mass-transfer concept can be applied successfully. For the modelling of finishers used for polycondensation at medium to high melt viscosities, the diffusion approach is necessary to describe the mass transport of EG and water in the polymer film on the surface area of the stirrer. Those tube-type reactors, which operate close to plug-flow conditions, allow the mass-transfer model to be applied successfully to describe the mass transport of volatile compounds from the polymer bulk at the bottom of the reactor to the high-vacuum gas phase. [Pg.86]

Reactions carried in aqueous multiphase catalysis are accompanied by mass transport steps at the L/L- as well as at the G/L-interface followed by chemical reaction, presumably within the bulk of the catalyst phase. Therefore an evaluation of mass transport rates in relation to the reaction rate is an essential task in order to gain a realistic mathematic expression for the overall reaction rate. Since the volume hold-ups of the liquid phases are the same and water exhibits a higher surface tension, it is obvious that the organic and gas phases are dispersed in the aqueous phase. In terms of the film model there are laminar boundary layers on both sides of an interphase where transport of the substrates takes place due to concentration gradients by diffusion. The overall transport coefficient /cl can then be calculated based on the resistances on both sides of the interphase (Eq. 1) ... [Pg.175]

The mass and heat transport model should be able to predict mass and energy fluxes through a gas/vapour-liquid interface in case a chemical reaction occurs in the liquid phase. In this study the film model will be adopted which postulates the existence of a well-mixed bulk and a stagnant transfer zone near the interface (see Fig. 1). The equations describing the mass and heat fluxes play an important role in our model and will be presented subsequently. [Pg.2]

The rate of mass transfer of a snbstance across a water-gas bonndary is controlled by the diffnsion film model as well. Gas transfer from a water sonrce is faster than from a solid sonrce, and the chemical does not nndergo a chemical reaction during the transfer process. Under these conditions, the interface concentration may be interpreted in terms of the Henry constant (K ), which indicates whether the controlling resistance is in the liqnid or the gas film. When 5, a water film is the controlling factor, while a gas film controls the behavior when K >500. [Pg.146]

This simple mass transfer model based on simplified film theory has been proposed to describe the process of facilitated transport of penicillin-G across a SLM system [53]. In the authors laboratory, CPC transport using Aliquat-336 as the carrier was studied [56] using microporous hydrophobic polypropylene membrane (Celgard 2400) support and the permeation rate was found to be controlled by diffusion across the membrane. [Pg.233]

The model provides a good approach for the biotransformation system and highlights the main parameters involved. However, prediction of mass transfer effects on the outcome of the process, through evaluation of changes in the mass transfer coefficients, is rather difficult. A similar mass transfer reaction model, but based on the two-film model for mass transfer for a transformation occurring in the bulk aqueous phase as shown in Figure 8.3, could prove quite useful. Each of the films presents a resistance to mass transfer, but concentrations in the two fluids are in equilibrium at the interface, an assumption that holds provided surfactants do not accumulate at the interface and mass transfer rates are extremely high [36]. [Pg.201]


See other pages where Mass film model is mentioned: [Pg.23]    [Pg.856]    [Pg.80]    [Pg.198]    [Pg.392]    [Pg.396]    [Pg.399]    [Pg.18]    [Pg.282]    [Pg.241]    [Pg.65]    [Pg.185]    [Pg.1]    [Pg.303]    [Pg.468]    [Pg.55]    [Pg.67]   
See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Film models model

Mass models

© 2024 chempedia.info