Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese dioxide salts

This reaction is also used on a large scale, to obtain iodine from seaweed. The ash from burnt seaweed ( kelp ) is extracted with water, concentrated, and the salts other than iodides (sulphates and chlorides) crystallise out. The more soluble iodides remain and the liquor is mixed with sulphuric acid and manganese dioxide added the evolved iodine distils off and is condensed. [Pg.319]

Chlorates Ammonium salts, acids, metal powders, sulfur, flnely divided organic or combustible materials, cyanides, metal sulfldes, manganese dioxide, sulfur dioxide, organic acids... [Pg.1207]

Seaweeds. The eadiest successful manufacture of iodine started in 1817 using certain varieties of seaweeds. The seaweed was dried, burned, and the ash lixiviated to obtain iodine and potassium and sodium salts. The first process used was known as the kelp, or native, process. The name kelp, initially apphed to the ash of the seaweed, has been extended to include the seaweed itself. About 20 t of fresh seaweed was used to produce 5 t of air-dried product containing a mean of 0.38 wt % iodine in the form of iodides of alkah metals. The ash obtained after burning the dried seaweed contains about 1.5 wt % iodine. Chemical separation of the iodine was performed by lixiviation of the burned kelp, followed by soHd-Hquid separation and water evaporation. After separating sodium and potassium chloride, and sodium carbonate, the mother Hquor containing iodine as iodide was treated with sulfuric acid and manganese dioxide to oxidize the iodide to free iodine, which was sublimed and condensed in earthenware pipes (57). [Pg.361]

Oxidation of manganese dioxide to higher valence states takes place in the fusion process of Mn02 and KOH. A tetravalent manganese salt identified as K MnO [12142-27-7] (63) which disproportionates spontaneously is formed. [Pg.511]

Electrolytic Manganese Dioxide. The anodic oxidation of an Mn(II) salt to manganese dioxide dates back to 1830, but the usefuhiess of electrolyticaHy prepared manganese dioxide for battery purposes was not recognized until 1918 (69). Initial use of electrolytic manganese dioxide (EAfD) for battery use was ia Japan (70) where usage continues. [Pg.512]

Oxidation. Nitroparaffins are resistant to oxidation. At ordinary temperatures, they are attacked only very slowly by strong oxidi2ing agents such as potassium permanganate, manganese dioxide, or lead peroxide. Nitronate salts, however, are oxidi2ed more easily. The salt of 2-nitropropane is converted to 2,3-dimethyl-2,3-dinitrobutane [3964-18-9], acetone, and nitrite ion by persulfates or electrolytic oxidation. With potassium permanganate, only acetone is recovered. [Pg.100]

Various lithium salts and butyrolactone or PC—DME mixtures are usually used as electrolytes. The close competitive performance of CF and MnO cathodes is evidenced in Table 3. The constmction of cells is also similar for the two systems. In addition to uses mentioned for the lithium manganese dioxide system, some unique apphcations such as lighted fishing bobbers have been developed for the Japanese market. [Pg.535]

Chemical Production. Electrolytic production of chemicals is conducted either by solution (water) electrolysis or fused-salt electrolysis. Fluorine, chlorine, chlorate, and manganese dioxide are Hberated from water solutions magnesium and sodium are generated from molten salt solutions. [Pg.521]

Chemical Properties. On thermal decomposition, both sodium and potassium chlorate salts produce the corresponding perchlorate, salt, and oxygen (32). Mixtures of potassium chlorate and metal oxide catalysts, especially manganese dioxide [1313-13-9] Mn02, are employed as a laboratory... [Pg.496]

Thymoquinone has been prepared directly from thymol by sulfonating and oxidizing the sulfonation mixture with manganese dioxide or potassium dichromate the same process has been successfully applied to carvacrol. The oxidation of sa ts of aminothymol with dichromate, ferric chloride, or nascent bromine also leads to satisfactory yields of thymoquinone. The above procedure is based on the observation that the diazonium salt obtained from aminothymol is almost quantitatively con-... [Pg.94]

Nickel peroxide is a solid, insoluble oxidant prepared by reaction of nickel (II) salts with hypochlorite or ozone in aqueous alkaline solution. This reagent when used in nonpolar medium is similar to, but more reactive than, activated manganese dioxide in selectively oxidizing allylic or acetylenic alcohols. It also reacts rapidly with amines, phenols, hydrazones and sulfides so that selective oxidation of allylic alcohols in the presence of these functionalities may not be possible. In basic media the oxidizing power of nickel peroxide is increased and saturated primary alcohols can be oxidized directly to carboxylic acids. In the presence of ammonia at —20°, primary allylic alcohols give amides while at elevated temperatures nitriles are formed. At elevated temperatures efficient cleavage of a-glycols, a-ketols... [Pg.248]

The mixture is distilled until most of the ether has been removed and then refluxed for 8 hr. Ethyl acetate is added to decompose the excess reagent and concentrated aqueous sodium sulfate is then added until the precipitate begins to adhere to the sides of the flask. Finally ca. 100 g of solid sodium sulfate is added, the salts are removed by filtration and washed well with dioxane. Evaporation of the solvent gives a solid residue which is dissolved in 60 ml of chloroform and shaken with 3.5 g of manganese dioxide for 16 hr. Subsequently another 3.5 g of manganese dioxide is added and shaking continued for a further 16 hr. The solid is removed by filtration and washed well with hot chloroform. Evaporation of solvent and crystallization of the residue from acetone-hexane affords 0.51 g (72%) of 17a-hydroxy-17jff-ethylandrost-4-en-3-one mp 145-148°. [Pg.165]

A crystalline salt or powdered metal oxide such as manganous chloride or manganese dioxide. This kind of ingredient is blended... [Pg.679]

Depending on the composition of the active materials and on the manganese dioxide type employed, the OCV of freshly manufactured zinc-carbon cells with salt electrolyte varies between 1.55 and 1.85 V. It decreases during discharge and formation of the variable-composition mass. Upon prolonged storage of undischarged batteries, their OCV also decreases. [Pg.351]

Rather than natural ores as in Leclanche batteries, electrolytic manganese dioxide (EMD), which is produced by anodic oxidation of Mn ions at graphite electrodes in solutions of manganese salts, is used as the active material for the positive... [Pg.352]

The effect of metal oxides in sensitising the thermal decomposition and explosion of the salt is in the order manganese dioxide > copper oxide > nickel oxide. [Pg.783]

Several total syntheses of antirhine (11) and 18,19-dihydroantirhine (14) have been developed during the last decade. Wenkert et al. (136) employed a facile route to ( )-18,19-dihydroantirhine, using lactone 196 as a key building block. Base-catalyzed condensation of methyl 4-methylnicotinate (193) with methyl oxalate, followed by hydrolysis, oxidative decarboxylation with alkaline hydrogen peroxide, and final esterification, resulted in methyl 4-(methoxycar-bonylmethyl)nicotinate (194). Condensation of 194 with acetaldehyde and subsequent reduction afforded nicotinic ester derivative 195, which was reduced with lithium aluminum hydride, and the diol product obtained was oxidized with manganese dioxide to yield the desired lactone 196. Alkylation of 196 with tryptophyl bromide (197) resulted in a pyridinium salt whose catalytic reduction... [Pg.178]

Quinone may be prepared by the oxidation of aniline with dichromate or manganese dioxide and sulfuric acid.1 This is a more feasible commercial method than the one given. However, the oxidation of hydroquinone is more rapid and convenient and, hence is more desirable for use in the laboratory. Various materials have been oxidized by chemical means to give quinone they are quinic acid,2 hydroquinone,3 benzidine,4 -phenylene-diamine,5 sulfanilic acid,6 / -phenolsulfonic acid,7 arbutin,8 aniline black,9 and the leaves of various plants.10 Quinone is also formed by several other methods by the fermentation of fresh grass 11 by the action of iodine on the lead salt of hydroquin-... [Pg.99]


See other pages where Manganese dioxide salts is mentioned: [Pg.301]    [Pg.134]    [Pg.511]    [Pg.511]    [Pg.511]    [Pg.328]    [Pg.292]    [Pg.51]    [Pg.317]    [Pg.431]    [Pg.148]    [Pg.819]    [Pg.54]    [Pg.82]    [Pg.37]    [Pg.464]    [Pg.278]    [Pg.3]    [Pg.96]    [Pg.226]    [Pg.93]    [Pg.94]    [Pg.80]    [Pg.86]    [Pg.93]    [Pg.357]    [Pg.462]    [Pg.166]    [Pg.11]    [Pg.123]   
See also in sourсe #XX -- [ Pg.153 , Pg.159 ]

See also in sourсe #XX -- [ Pg.173 , Pg.179 ]




SEARCH



Manganese dioxid

Manganese dioxide

Manganese salts

© 2024 chempedia.info