Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mammalian inhibitors

Supportive evidence comes from a study showing that intraventricular administration of z-VADfluoromethylketone (fmk), a pan-caspase inhibitor increases the lifespan of SODl transgenic mice by approximately 25% (Li et al, 2000). Furthermore, overexpression of XIAP, a mammalian inhibitor of caspases 3,7 and 9, in spinal motor neurons of mutant SODl mice attenuated disease progression without delaying onset, whilst expression of p35, a baculoviral caspase inhibitor that does not inhibit caspase-9, delayed onset without decreasing disease progression (Inoue et al, 2003). Moreover, caspase-9 was activated in spinal motor neurons of ALS patients. [Pg.273]

Moore BH, Gagle PT, Allen TC, et al. Topoisomerasae Il-alpha, minichromosome maintenance protein 2 (MCM2), and X-linked mammalian inhibitor of apoptosis protein (XIAP) expression in pleural diffuse malignant mesothelioma (PDMM) Possible role for chemotherapeutic intervention. Mod Pathol. 2008 21 347A. [Pg.463]

The catalytic subunit of cAPK contains two domains connected by a peptide linker. ATP binds in a deep cleft between the two domains. Presently, crystal structures showed cAPK in three different conformations, (1) in a closed conformation in the ternary complex with ATP or other tight-binding ligands and a peptide inhibitor PKI(5-24), (2) in an intermediate conformation in the binary complex with adenosine, and (3) in an open conformation in the binary complex of mammalian cAPK with PKI(5-24). Fig.l shows a superposition of the three protein kinase configurations to visualize the type of conformational movement. [Pg.68]

The procedure is computationally efficient. For example, for the catalytic subunit of the mammalian cAMP-dependent protein kinase and its inhibitor, with 370 residues and 131 titratable groups, an entire calculation requires 10 hours on an SGI 02 workstation with a 175 MHz MIPS RIOOOO processor. The bulk of the computer time is spent on the FDPB calculations. The speed of the procedure is important, because it makes it possible to collect results on many systems and with many different sets of parameters in a reasonable amount of time. Thus, improvements to the method can be made based on a broad sampling of systems. [Pg.188]

Biorational approaches have proven useful in the development of classes of herbicides which inhibit essential metaboHc pathways common to all plants and thus are specific to plants and have low toxicity to mammalian species. Biorational herbicide development remains a high risk endeavor since promising high activities observed in the laboratory may be nullified by factors such as limitations in plant uptake and translocation, and the instabiHty or inactivity of biochemical en2yme inhibitors under the harsher environmental conditions in the field. Despite these recogni2ed drawbacks, biorational design of herbicides has shown sufficient potential to make the study of herbicide modes of action an important and growing research area. [Pg.39]

Molybdate is also known as an inhibitor of the important enzyme ATP sulfurylase where ATP is adenosine triphosphate, which activates sulfate for participation in biosynthetic pathways (56). The tetrahedral molybdate dianion, MoO , substitutes for the tetrahedral sulfate dianion, SO , and leads to futile cycling of the enzyme and total inhibition of sulfate activation. Molybdate is also a co-effector in the receptor for steroids (qv) in mammalian systems, a biochemical finding that may also have physiological implications (57). [Pg.475]

In general, penicillins exert thek biological effect, as do the other -lactams, by inhibiting the synthesis of essential structural components of the bacterial cell wall. These components are absent in mammalian cells so that inhibition of the synthesis of the bacterial cell wall stmcture occurs with Htde or no effect on mammalian cell metaboHsm. Additionally, penicillins tend to be kreversible inhibitors of bacterial cell-wall synthesis and are generally bactericidal at concentrations close to thek bacteriostatic levels. Consequently penicillins have become widely used for the treatment of bacterial infections and are regarded as one of the safest and most efficacious classes of antibiotics. [Pg.72]

With the aid of cytosine permease, flucytosine reaches the fungal cell where it is converted by cytosine deaminase into 5-fluorouracil [51-21-8]. Cytosine deaminase is not present in the host, which explains the low toxicity of 5-FC. 5-Fluorouracil is then phosphorylated and incorporated into RNA and may also be converted into 5-fluorodeoxyuridine monophosphate, which is a potent and specific inhibitor of thymidylate synthetase. As a result, no more thymidine nucleotides are formed, which in turn leads to a disturbance of the DNA-synthesis. These effects produce an inhibition of the protein synthesis and cell repHcation (1,23,24). 5-Fluorouracil caimot be used as an antimycotic. It is poorly absorbed by the fungus to begin with and is also toxic for mammalian cells. [Pg.256]

The antiviral activity of (5)-DHPA in vivo was assessed in mice inoculated intranasaHy with vesicular stomatitis vims ( 5)-DHPA significantly increased survival from the infection. (5)-DHPA did not significantly reduce DNA, RNA, or protein synthesis and is not a substrate for adenosine deaminase of either bacterial or mammalian origin. However, (5)-DHPA strongly inhibits deamination of adenosine and ara-A by adenosine deaminase. Its mode of action may be inhibition of Vadenosyl-L-homocysteine hydrolase (61). Inhibition of SAH hydrolase results in the accumulation of SAH, which is a product inhibitor of Vadenosylmethionine-dependent methylation reactions. Such methylations are required for the maturation of vital mRNA, and hence inhibitors of SAH hydrolase may be expected to block vims repHcation by interference with viral mRNA methylation. [Pg.308]

The biochemical basis of penicillin action continues to be an area of active investigation. Penicillins are highly specific inhibitors of enzyme(s) involved in the synthesis of the bacterial cell wall, a structure not present in mammalian cells. Three principal factors are thought to be important for effective antibacterial action by a penicillin ... [Pg.336]

FIGURE 10.8 A schematic diagram of the Na, K -ATPase in mammalian plasma membrane. ATP hydrolysis occurs on the cytoplasmic side of the membrane, Na ions are transported out of the cell, and ions are transported in. The transport stoichiometry is 3 Na out and 2 in per ATP hydrolyzed. The specific inhibitor ouabain (Figure 7.12) and other cardiac glycosides inhibit Na, K -ATPase by binding on the extracellular surface of the pump protein. [Pg.302]

Other examples of a-keto acid-dependent enzymes are mammalian proline hydroxylase and bacterial clavaminate synthase [113]. The latter enzyme is of particular interest as it is responsible for the catalysis of three individual steps in the biosynthesis of the (3-lactamase inhibitor clavulanic acid (Scheme 10.30). [Pg.389]

Eflornithine (difluoromethylornithine, DFMO) inhibits the ornithine decarboxylase of the polyamine pathway, in both the trypanosome and the mammalian cell, by acting as an irreversible competitor of the natural substrate ornithine. Inhibition of ornithine decarboxylase results in depletion of the polyamines, putrescine, spermidine and spermine, which are essential for cell proliferation. Eflornithine selectively harms the parasite and not the mammalian cells, despite acting as an ornithine decarboxylase inhibitor in both cell types. This selectivity is explained by the lower rate of ornithine decarboxylase production in the parasite, as compared to mammalian cells. Due to the high turnover rate, mammalian cells are capable of quickly replenishing inhibited ornithine decarboxylase by newly... [Pg.179]

Rapamycin is an immunosuppressive diug and an inhibitor of S6K1 (also known as p70S6-kinase) which phosphorylates ribosomal S6 protein. S6K1 is activated in response to insulin via activation of Akt. Rapamycin binds to a specific target protein (mTOR, mammalian target of rapamycin) which is functionally located downstream of Akt, but upstream... [Pg.636]

PIAS (protein inhibitors of activated STATs) proteins were first discovered in yeast-two-hybrid screens as interacting molecules with STAT transcription factors. The mammalian family consists ofthe founding member PIAS3, which was described as a repressor of STAT3, and three additional members, PIAS1, PIASy (also known as PIAS4), and PIASx (also known as... [Pg.977]

With respect to targeting viral gene products expressed in virus-infected cells, it should be considered that infectious mammalian viruses may express inhibitors of RNAi similar to plant viruses. [Pg.1093]

II cleaves the two complementary strands of DNA four base pairs apart and the resulting 5 -phosphoryl groups become covalently linked to a pair of tyrosine groups, one in each half of the dimeric topoisomerase II enzyme. Several groups of drugs are known that selectively inhibit topoisomerases in bacteria (quino-lones) or mammalian cells (etoposide, tenoposide). Quinolones are used to treat bacterial infections inhibitors of mammalian topoisomerases are cytostatic drugs used for the treatment of cancer. [Pg.1212]

Cells are normally kept at osmotic (water activity) equilibrium by the action of the Na-pump. Inhibition of the pump with the specific Na -K -ATPase inhibitor, ouabain, causes cell swelling as does inhibition of it by hypothermia. The intracellular environment contains a high concentration of K (100 to 120 mM, in most mammalian cells), lower concentrations of Na (about 10 to 30 mM), and high... [Pg.389]

Group 2 includes some 80 sesquiterpene trichothecenes, which are particularly associated with fungi belonging to the group Fusarium. Fusarium species are widely known both as plant pathogens and contaminants of stored foods snch as maize. Trichothecenes are strong inhibitors of protein synthesis in mammalian cells. There have been many incidents of poisoning of farm animals cansed by contamination of their food by these componnds. [Pg.13]


See other pages where Mammalian inhibitors is mentioned: [Pg.207]    [Pg.422]    [Pg.194]    [Pg.451]    [Pg.452]    [Pg.207]    [Pg.422]    [Pg.194]    [Pg.451]    [Pg.452]    [Pg.279]    [Pg.122]    [Pg.113]    [Pg.308]    [Pg.275]    [Pg.34]    [Pg.35]    [Pg.564]    [Pg.705]    [Pg.744]    [Pg.790]    [Pg.885]    [Pg.1057]    [Pg.1140]    [Pg.1194]    [Pg.1302]    [Pg.308]    [Pg.6]    [Pg.10]    [Pg.29]    [Pg.120]    [Pg.138]    [Pg.166]    [Pg.479]    [Pg.122]    [Pg.144]    [Pg.348]   
See also in sourсe #XX -- [ Pg.333 , Pg.334 ]




SEARCH



© 2024 chempedia.info