Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Major constituents

The major constituents in seawater are conventionally taken to be those elements present in typical oceanic water of salinity 35 that have a concentration greater than 1 mg kg excluding Si, which is an important nutrient in the marine environment. The concentrations and main species of these elements are presented in Table 1. One of the most significant observations from the Challenger expedition of 1872-1876 was that these major components existed in constant relative amounts. As already explained, this feature was exploited for salinity determinations. Inter-element ratios are generally constant, and often expressed as a ratio to Cl%o as shown in Table 1. This implies conservative behaviour, with concentrations depending solely upon mixing processes, and indeed, salinity itself is a conservative index. [Pg.182]

Because of this behaviour, individual seawater constituents can be utilised for source apportionment studies in non-marine environments. For instance, an enrichment factor EF) for a substance X is defined as [Pg.182]

An EF of 1 indicates that the substance exists in comparable relative amounts in the sample and in seawater, thereby giving a good indication [Pg.182]

Not all the major constituents consistently exhibit conservative behaviour in the ocean. The most notable departures occur in deepwaters, where Ca and HCO3 exhibit anomalously high concentrations due to the dissolution of calcite. The concept of relative constant composition does not apply in a number of atypical environments associated with boundary regions. Inter-element ratios for major constituents can be quite different in estuaries and near hydrothermal vents. Obviously, these are not solutions of sea salt with the implication that accuracy of salinity measurements by chemical and conductometric means is limited. [Pg.183]

Element Principal species Concentration (mol L- ) Residence time (year)  [Pg.184]


Above approximately 80 km, the prominent bulge in electron concentration is called the ionosphere. In this region ions are created from UV photoionization of the major constituents—O, NO, N2 and O2. The ionosphere has a profound effect on radio conmumications since electrons reflect radio waves with the same frequency as the plasma frequency, f = 8.98 x where 11 is the electron density in [147]. The... [Pg.817]

On a laboratory scale, hydrotliennal syntliesis is usually carried out in Teflon-coated, stainless-steel autoclaves under autogenous pressure. A typical syntliesis mixture consists of up to four major constituents, a T-atoni source (silicon and aluminium, otlier elements may also be incoriiorated as indicated above), a solvent (almost exclusively... [Pg.2784]

Nitrogen molecules, a major constituent of air, are excited by electron collisions and the excitation energy is transferred to the O 2 molecules, or the N2 molecules may be dissociated and O atoms fonned via the reactions... [Pg.2809]

In this article the term acrylamide polymer refers to all polymers which contain acrylamide as a major constituent. Consequendy, acrylamide polymers include functionalized polymers prepared from polyacrylamide by postreaction and copolymers prepared by polymerizing acrylamide (2-propenamide, C H NO) with one or more comonomers. [Pg.139]

Natxiial mixtxiie f 99.3% 0.72% and 0.006%). Half-life given is foi the major constituent... [Pg.215]

Organic compounds are a major constituent of the FPM at all sites. The major sources of OC are combustion and atmospheric reactions involving gaseous VOCs. As is the case with VOCs, there are hundreds of different OC compounds in the atmosphere. A minor but ubiquitous aerosol constituent is elemental carbon. EC is the nonorganic, black constituent of soot. Combustion and pyrolysis are the only processes that produce EC, and diesel engines and wood burning are the most significant sources. [Pg.374]

A great variety of resia formulations is possible because other thermosets, such as epoxies or acrylates, and reactive diluents, such as o-diaUyl phthalate [131-17-9] triaUyl cyanurate [101-37-17, or triaUyl isocyanurate [1023-13-6J, can be used to further modify the BT resias. The concept is very flexible because bismaleimide and biscyanate can be blended and copolymerized ia almost every ratio. If bismaleimide is used as a major constituent, then homopolymerization of the excess bismaleimide takes place ia addition to the copolymerization. Catalysts such as ziac octoate or tertiary amines are recommended for cure. BT resias are mainly used ia ptinted circuit and multilayer boards (58). [Pg.31]

A Bureau of Mines system for the separation of hehum from natural gas is shown in Fig. 11-119. Since the major constituents of natural gas have boiling points very much different from that of helium, a distillation column is not necessary and the separation can be accomphshed with condenser-evaporators. [Pg.1133]

There are numerous solubility data in the literature the standard reference is by Seidell (loc. cit.). Valuable as they are, they nevertheless must be used with caution because the solubihty of compounds is often influenced by pH and/or the presence of other soluble impurities which usually tend to depress the solubihty of the major constituents. While exact values for any system are frequently best determined by actual composition measurements, the difficulty of reproducing these solubility diagrams should not be underestimated. To obtain data which are readily reproducible, elaborate pains must be taken to be sure the system sampled is at equihbrium, and often this means holding a sample at constant temperature for a period of from 1 to 100 h. While the published cui ves may not be exac t for actual solutions of interest, they generally will be indicative of the shape of the solubility cui ve and will show the presence of hydrates or double salts. [Pg.1654]

In oxygenated water of near neutral pH and at or slightly above room temperature, hydrous ferric oxide [FelOHla] forms on steel and cast irons. Corrosion products are orange, red, or brown and are the major constituent of rust. This layer shields the underl3dng metal surface from oxygenated water, so oxygen concentration decreases beneath the rust layer. [Pg.37]

Mapping of major constituents can be carried out in approximately 15-30 minutes of scanning per image. Minor constituents require 0.5-3 hours, and trace constituents require 3-10 hours. An example of a dot map of zinc at concentrations in copper as low as 1% is shown in Figure 5 6 hours of scan time was needed to produce a dot map at this level. [Pg.188]

A ZnSe-on-GaAs epitaxial layer required a sensitive survey of near-surface contamination. PAI was selected for ZnSe analysis because its major constituents and many of the expected impurities are elements that have poor ion yields in conventional LIMS. Figures 8 and 9 are two mass spectra acquired from the ZnSe epitaxial layer. [Pg.593]

Ozone (Oj) a gas similar to oxygen that is a criteria air pollutant and a major constituent of smog. See also reactive organic compounds volatile organic compounds. [Pg.541]

To conclude this section let us note that already, with this very simple model, we find a variety of behaviors. There is a clear effect of the asymmetry of the ions. We have obtained a simple description of the role of the major constituents of the phenomena—coulombic interaction, ideal entropy, and specific interaction. In the Lie group invariant (78) Coulombic attraction leads to the term -cr /2. Ideal entropy yields a contribution proportional to the kinetic pressure 2 g +g ) and the specific part yields a contribution which retains the bilinear form a g +a g g + a g. At high charge densities the asymptotic behavior is determined by the opposition of the coulombic and specific non-coulombic contributions. At low charge densities the entropic contribution is important and, in the case of a totally symmetric electrolyte, the effect of the specific non-coulombic interaction is cancelled so that the behavior of the system is determined by coulombic and entropic contributions. [Pg.835]

The uses in the glass and ceramics industries reflect the diagonal relation between boron and silicon and the similarity of vitreous borate and silicate networks (pp. 203, 206 and 347). In the UK and continental Europe (but not in the USA or Japan) sodium perborate (p. 206) is a major constituent of washing powders since it hydrolyses to H2O2 and acts as a bleaching agent in very hot water ( 90°C) in the USA domestic washing machines rarely operate above 70°, at which temperature perborates are ineffective as bleaches. [Pg.140]

This section considers a number of extremely important structure types in which A1 combines with one or more other metals to form a mixed oxide phase. The most significant of these from both a theoretical and an industrial viewpoint are spinel (MgAl204) and related compounds, Na- -alumina (NaAlnOi ) and related phases, and tricalcium aluminate (Ca3Al20g) which is a major constituent of Portland cement. Each of these compounds raises points of fundamental importance in solid-state chemistry and each possesses properties of crucial significance to... [Pg.247]

None of the three elements is particularly abundant in the earth s crust though several minerals contain them as major constituents. As can be seen from Table 13.1, arsenic occurs about halfway down the elements in order of abundance, grouped with several others near 2 ppm. Antimony has only one-tenth of this abundance and Bi, down by a further factor of 20 or more, is about as unabundant as several of the commoner platinum metals and gold. In common with all the post-transition-element metals. As, Sb and Bi are chalcophiles, i.e. they occur in association with the chalcogens S, Se and Te rather than as oxides and silicates. [Pg.548]

World production expressed as 100% H2O2 approached 1.9 million tonnes in 1994 of which half was in Europe and one-fifth in the USA. The earliest and still the largest industrial use for H2O2 is as a bleach for textiles, paper pulp, straw, leather, oils and fats, etc. Domestic use as a hair bleach and a mild disinfectant has diminished somewhat. Hydrogen peroxide is also extensively used to manufacture chemicals, notably sodium perborate (p. 206) and percarbonate, which are major constituents of most domestic detergents at least in the UK and Europe. Normal formulations include 15-25% of such peroxoacid salts, though the practice is much less widespread in the USA, and the concentrations, when included at all, are usually less than 10%. [Pg.634]

Yttrium and lanthanum are both obtained from lanthanide minerals and the method of extraction depends on the particular mineral involved. Digestions with hydrochloric acid, sulfuric acid, or caustic soda are all used to extract the mixture of metal salts. Prior to the Second World War the separation of these mixtures was effected by fractional crystallizations, sometimes numbered in their thousands. However, during the period 1940-45 the main interest in separating these elements was in order to purify and characterize them more fully. The realization that they are also major constituents of the products of nuclear fission effected a dramatic sharpening of interest in the USA. As a result, ion-exchange techniques were developed and, together with selective complexation and solvent extraction, these have now completely supplanted the older methods of separation (p. 1228). In cases where the free metals are required, reduction of the trifluorides with metallic calcium can be used. [Pg.945]

The major constituents of unpolluted air (not including water) at ground level are iritrogerr (78.08%) and oxygen (20.95%). The next most abundant constituents are argon (at 0.934%) and carbon dioxide (about 0.0.34%), followed by the other noble gases ... [Pg.47]

Binuclear aromatic hydrocarbons are found in heavier fractions than naphtha. Trinuclear and polynuclear aromatic hydrocarbons, in combination with heterocyclic compounds, are major constituents of heavy crudes and crude residues. Asphaltenes are a complex mixture of aromatic and heterocyclic compounds. The nature and structure of some of these compounds have been investigated. The following are representative examples of some aromatic compounds found in crude oils ... [Pg.14]


See other pages where Major constituents is mentioned: [Pg.132]    [Pg.179]    [Pg.354]    [Pg.358]    [Pg.187]    [Pg.107]    [Pg.553]    [Pg.314]    [Pg.198]    [Pg.199]    [Pg.203]    [Pg.204]    [Pg.216]    [Pg.496]    [Pg.595]    [Pg.11]    [Pg.257]    [Pg.182]    [Pg.183]    [Pg.336]    [Pg.476]    [Pg.395]    [Pg.632]    [Pg.29]    [Pg.187]    [Pg.124]    [Pg.217]    [Pg.357]    [Pg.867]    [Pg.323]   
See also in sourсe #XX -- [ Pg.176 , Pg.177 ]




SEARCH



© 2024 chempedia.info