Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low Concentration

At low pressures (P 100bar), hydrogen can be considered as an ideal gas and its chemical potential is given by [45]  [Pg.85]

Where and are, respectively, the standard state enthalpy and entropy. On the other hand, the chemical potential of a dissolved H atom is [15]  [Pg.85]

Where Hs is the enthalpy, is the non-configurational part (vibration) of the entropy [Pg.85]

We see that the heat of solution has the same trend across the periodic table for the three rows of elements. This is an indication that the heat of solution is determined by the coarse electronic structure of the host metal [15]. In the case of the entropy term. [Pg.85]


Selectivity for series reactions of the types given in Eqs. (2.7) to (2.9) is increased by low concentrations of reactants involved in the secondary reactions. In the preceding example, this means reactor operation with a low concentration of PRODUCT—in other words, with low conversion. For series reactions, a significant reduction in selectivity is likely as the conversion increases. [Pg.27]

Multiple reactions in series producing byproducts. For the series reaction system in Eq. (2.18), the series reaction is inhibited by low concentrations of PRODUCT. It has been noted already that this can be achieved by operating with a low conversion. [Pg.38]

Another way to keep the concentration of PRODUCT low is to remove the product as the reaction progresses, e.g., by intermediate separation followed by further reaction. For example, in a reaction system such as Eq. (2.18), intermediate separation of the PRODUCT followed by further reaction maintains a low concentration of PRODUCT as the reaction progresses. Such intermediate separation is most appropriate when separation of the product from the reactants is straightforward. [Pg.39]

In situations where a low concentration of suspended solids needs to be separated from a liquid, then cross-flow filtration can be used. The most common design uses a porous tube. The suspension is passed through the tube at high velocity and is concentrated as the liquid flows through the porous medium. The turbulent flow prevents the formation of a filter cake, and the solids are removed as a more concentrated slurry. [Pg.74]

Separation of components with a low concentration. Distillation is not well suited to the separation of products which form a low concentration in the feed mixture. Adsorption and absorption are both effective alternative means. [Pg.75]

The third of the major hazards and the one with the greatest disaster potential is the release of toxic chemicals. The hazard posed by toxic release depends not only on the chemical species but also on the conditions of exposure. The high disaster potential from toxic release arises in situations where large numbers of people are briefly exposed to high concentrations of toxic material, i.e., acute exposure. However, the long-term health risks associated with prolonged exposure at low concentrations, i.e., chronic exposure, also present serious hazards. [Pg.259]

While incineration is the preferred method of disposal for wastes containing high concentrations of organics, it becomes expensive for aqueous wastes with low concentrations of organics because auxiliary fuel is required, making the treatment expensive. Weak aqueous solutions of organics are better treated by wet oxidation (see Sec. 11.5). [Pg.301]

Incineration. Incinerators were discussed in Sec. 11.1. When incinerators are used to treat gaseous pollutants in relatively low concentration, auxiliary firing from fuel or other waste material normally will be necessary. The capital and operating costs may be high. In addition, long duct lines are often necessary. [Pg.305]

Radioactive isotopes show excellent properties as tracers since they are detectable in very low concentrations (i.e. high dilution) and with high specificity. Further y-emitting radioactive tracers can be measured in situ, through pipe and vessel walls which enables e.g. studies of processes under high pressures, and processes involving a gaseous phase. [Pg.1053]

The type of behavior shown by the ethanol-water system reaches an extreme in the case of higher-molecular-weight solutes of the polar-nonpolar type, such as, soaps and detergents [91]. As illustrated in Fig. Ul-9e, the decrease in surface tension now takes place at very low concentrations sometimes showing a point of abrupt change in slope in a y/C plot [92]. The surface tension becomes essentially constant beyond a certain concentration identified with micelle formation (see Section XIII-5). The lines in Fig. III-9e are fits to Eq. III-57. The authors combined this analysis with the Gibbs equation (Section III-SB) to obtain the surface excess of surfactant and an alcohol cosurfactant. [Pg.69]

Returning to Eq. XI-4, wiA C2 replacing 02, at low concentrations 112 will be proportional to C2 with a slope n b. At sufficiently high concentrations /I2 approaches the limiting value n . Thus is a measure of the capacity of the adsorbent and b of the intensity of the adsorption. In terms of the ideal model, nf should not depend on temperature, while b should show an exponential... [Pg.392]

The effect is more than just a matter of pH. As shown in Fig. XV-14, phospholipid monolayers can be expanded at low pH values by the presence of phosphotungstate ions [123], which disrupt the stmctival order in the lipid film [124]. Uranyl ions, by contrast, contract the low-pH expanded phase presumably because of a type of counterion condensation [123]. These effects caution against using these ions as stains in electron microscopy. Clearly the nature of the counterion is very important. It is dramatically so with fatty acids that form an insoluble salt with the ion here quite low concentrations (10 M) of divalent ions lead to the formation of the metal salt unless the pH is quite low. Such films are much more condensed than the fatty-acid monolayers themselves [125-127]. [Pg.557]

The situation for electrolyte solutions is more complex theory confimis the limiting expressions (originally from Debye-Htickel theory), but, because of the long-range interactions, the resulting equations are non-analytic rather than simple power series.) It is evident that electrolyte solutions are ideally dilute only at extremely low concentrations. Further details about these activity coefficients will be found in other articles. [Pg.361]

Wlien KC) < i (i.e. at very low concentrations), we have the Debye-Htickel limiting law distribution fiinction ... [Pg.487]

If we deal with a solution at very low concentrations, we can ignore the interactions between the particles and express the scattered intensity as... [Pg.1414]

For a simple electron transfer reaction containing low concentrations of a redox couple in an excess of electrolyte, the potential established at an inert electrode under equilibrium conditions will be governed by the Nemst equation and the electrode will take up the equilibrium potential for the couple 0/R. In temis of... [Pg.1923]

Polymer chains at low concentrations in good solvents adopt more expanded confonnations tlian ideal Gaussian chains because of tire excluded-volume effects. A suitable description of expanded chains in a good solvent is provided by tire self-avoiding random walk model. Flory 1151 showed, using a mean field approximation, that tire root mean square of tire end-to-end distance of an expanded chain scales as... [Pg.2519]

The tendency for particles to settle is opposed by tlieir Brownian diffusion. The number density distribution of particles as a function of height z will tend to an equilibrium distribution. At low concentration, where van T Ftoff s law applies, tire barometric height distribution is given by... [Pg.2673]

As shown in section C2.6.6.2, hard-sphere suspensions already show a rich phase behaviour. This is even more the case when binary mixtures of hard spheres are considered. First, we will mention tire case of moderate size ratios, around 0.6. At low concentrations tliese fonn a mixed fluid phase. On increasing tire overall concentration of mixtures, however, binary crystals of type AB2 and AB were observed (where A represents tire larger spheres), in addition to pure A or B crystals [105, 106]. An example of an AB2 stmcture is shown in figure C2.6.11. Computer simulations confinned tire tliennodynamic stability of tire stmctures tliat were observed [107, 1081. [Pg.2689]

An important point about kinetics of cyclic reactions is tliat if an overall reaction proceeds via a sequence of elementary steps in a cycle (e.g., figure C2.7.2), some of tliese steps may be equilibrium limited so tliat tliey can proceed at most to only minute conversions. Nevertlieless, if a step subsequent to one tliat is so limited is characterized by a large enough rate constant, tlien tire equilibrium-limited step may still be fast enough for tire overall cycle to proceed rapidly. Thus, tire step following an equilibrium-limited step in tire cycle pulls tire cycle along—it drains tire intennediate tliat can fonn in only a low concentration because of an equilibrium limitation and allows tire overall reaction (tire cycle) to proceed rapidly. A good catalyst accelerates tire steps tliat most need a boost. [Pg.2700]

Here the viscosity of the gas mixture has been taken to be since the solutes are present only in low concentration. [Pg.37]

Such a mechanism is supported by the fact that the reaction is accelerated by benzoyl peroxide and other radical-producing agents. It is now however considered that the function of the A -bromosuceinimide is to provide a constant, very low concentration of molecular bromine (Tedder et al,). [Pg.177]

The isolation of enzymes in a pure state is frequently a matter of great difficulty owing to their instability, their low concentrations in plant and animal tissues, and also to their colloidal nature. The methods employed depend upon the physical and chemical nature of the enzyme in question. In the following experiments, no attempt has been made to isolate enzymes in a high slate of purity. [Pg.510]

Mercaptans and thiophenols (thiols). The thiols are generally liquids with penetrating and disagreeable odours, which persist even at extremely low concentrations in the air. They are soluble in dilute sodium hydroxide solution. Thiols are best characterised as the crystalline 2 4-dinitrophenyl thioethers or as the corresponding sulphones (see Section 111,168). [Pg.1078]

Natural gadolinium is a mixture of seven isotopes, but 17 isotopes of gadolinium are now recognized. Although two of these, 155Gd and 157Gd, have excellent capture characteristics, they are only present naturally in low concentrations. As a result, gadolinium has a very fast burnout rate and has limited use as a nuclear control rod material. [Pg.187]


See other pages where Low Concentration is mentioned: [Pg.30]    [Pg.39]    [Pg.47]    [Pg.359]    [Pg.37]    [Pg.38]    [Pg.54]    [Pg.182]    [Pg.212]    [Pg.380]    [Pg.83]    [Pg.411]    [Pg.415]    [Pg.539]    [Pg.483]    [Pg.492]    [Pg.500]    [Pg.512]    [Pg.512]    [Pg.571]    [Pg.818]    [Pg.1417]    [Pg.2521]    [Pg.2668]    [Pg.2680]    [Pg.11]   


SEARCH



A Solar Concentrator Pathway to Low-Cost Electrolytic Hydrogen

At low electrolyte concentration

Distillation low product concentrations

EL Devices from Conjugated Polymers with a Low Defect Concentration

Effect of Low Concentrations

High Pressure Spray Concentrate (Liquid, Low Foam)

Low analyte concentrations

Low carotenoid concentration

Low concentration analytes

Low concentration chemical model

Low concentration effects

Low concentrations of adsorbate

Low defect concentration

Low polyelectrolyte concentrations

Low product concentrations

Low substrate concentration

Low-Level Exposure Concentration

Low-concentration behavior

Nitroglycerin low concentrations

Partitioning at Low Concentrations

Relationships between Low and High Concentration Regimes

Removal of VOC at Low Concentrations

The Need for Low Catalyst Concentrations

X at low concentrations

© 2024 chempedia.info