Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Location exchangers

Then, indexed material costs can be used to calculate indexed product value rates for all other products and locations along the value chain within the index sequence summing up material costs and average production cost rates considering location exchange rate factor ratios. [Pg.155]

The total net sales turnover yf per period sums spot sales turnover y% as well as contract turnover by product and location /pe PJ eL multiplied with the location exchange rate factor Xn of the period. [Pg.169]

Finally, procurement costs are summed for all procured products and procurement locations applying the respective location exchange rate factors. [Pg.205]

Porosity was measured from samples taken off the first 2 in. of the core, location Exchange Capacity. [Pg.89]

When a modification either during the synthesis or by post synthesis procedure has been performed the first question which everyone is asking himself is to determine if the modifier element has been incorporated in the lattice framework at the lattice position or at cationic sites location (exchangeable sites for instance) or at last entrapped in the cavities or pores as tiny clusters or metallic oxide particles or even metallic oxide crystallites as impregnated or deposited near the zeolitic crystallites. [Pg.27]

Interchange of spins at chemically distinct locations. Exchange must be slow on NMR timescale for separate resonances to be observed. Intermediate to fast exchange requires lineshape analysis... [Pg.8]

EXHIBIT 6-27 Alternative Arrangements for Locating Exchanger Nozzles... [Pg.126]

Example 16.1 The process stream data for a heat recovery network problem are given in Table 16.1. A problem table analysis on these data reveals that the minimum hot utility requirement for the process is 15 MW and the minimum cold utility requirement is 26 MW for a minimum allowable temperature diflFerence of 20°C. The analysis also reveals that the pinch is located at a temperature of 120°C for hot streams and 100°C for cold streams. Design a heat exchanger network for maximum energy recovery in the minimum number of units. [Pg.371]

The size of the leakage was determined as follows. Radiation detectors were mounted on the inlet of the first side, and the outlet of the second side of the heat exchanger and at additional locations for control. A short pulse of Kr-85 tracer (<0.1 sec) was injected into the feed stream, which gave rise to detector responses shown in figure 3. [Pg.1058]

Compositional variety can also be achieved by ion exchange [24]. The cations are then located at the ion-exchange... [Pg.2782]

Figure 2. The space-fixed (XYZ) and body-fixed xyz) frames in a diatomic molecule AB. The nuclei are at A and B, and 1 represents the location of a typical electron. The results of inversions of their SF coordinates are A A, B B, and 1 1, respectively. After one executes only the reinversion of the electronic SF coordinates, one obtains 1 — 1. The net effect is then the exchange of the SF nuclear coordinates alone. Figure 2. The space-fixed (XYZ) and body-fixed xyz) frames in a diatomic molecule AB. The nuclei are at A and B, and 1 represents the location of a typical electron. The results of inversions of their SF coordinates are A A, B B, and 1 1, respectively. After one executes only the reinversion of the electronic SF coordinates, one obtains 1 — 1. The net effect is then the exchange of the SF nuclear coordinates alone.
Equality between the 1, 2 wave function and the modulus of the 2, 1 wave function, v /(j2, i), shows that they have the same curve shape in space after exchange as they did before, which is necessary if their probable locations are to be the same. The phase factor orients one wave function relative to the other in the complex plane, but Eq. (9-17) is simplified by one more condition that is always true for particle exchange. When exchange is canied out twice on the same particle pair, the operation must produce the original configuration of particles... [Pg.267]

Irradiation of a 2-methvlthio-4-hydroxythiazolium hydroxide inner salt (12) leads to exchange of the carbon atoms located in the 2 and 4 positions, probably via a thiirenium ion (Scheme 13) (5). [Pg.7]

Air control louvers or dampers, popular in the past for air flow control, are used primarily for only very low scale air flow control. Louvers are used in many winterized heat exchangers in extremely low ambient temperature locations to retain and recirculate warm air in completely enclosed heat exchangers, sometimes in very compHcated control schemes. The use of louvers on the discharge side of a fan to control air flow is inefficient and creates mechanical problems in the louvers because of the turbulence. A fan is a constant volume device, thus use of louvers to control flow is equivalent to... [Pg.111]

Before entering the spinneret, the extmsion solution, also caUed a dope, is heated to reduce the viscosity and provide some of the heat necessary to flash the solvent from the extmded filament, A thermostaticaUy controUed heat exchanger may be used to heat the dope, or the filter—spinneret assembly may be located inside the heated extmsion cabinet. [Pg.296]

Trace Evidence. Trace evidence (23) refers to minute, sometimes microscopic material found during the examination of a crime scene or a victim s or suspect s clothing (see Trace AND residue analysis). Trace evidence often helps poHce investigators (24) develop connections between suspect and victim and the crime scene. The theory behind trace evidence was first articulated by a French forensic scientist the Locard Exchange Principle notes that it is not possible to enter a location, such as a room, without changing the environment. An individual brings trace materials into the area and takes trace materials away. The challenge to the forensic scientist is to locate, collect, preserve, and characterize the trace evidence. [Pg.487]

A commercial design based on semicontinuous operation was developed for manufacture of silicate powders (27). A slurry, prepared containing the feed materials and water, is fed to the reactor tank and heated by circulating a heat-exchange fluid in channels located on the outside vessel wall. A six-bladed stirrer is operated at about 100 rpm in order to keep reagents well mixed. Once the slurry reaches the operating temperature, the vessel heat is maintained until reaction is complete. For most fine-particle products, this time is less than 1 hr. [Pg.502]

The degree of swelling and shrinking is important for design of ion-exchange columns, especiaUy for the location of the distributors used to disperse incoming fluids, and coUect outgoing ones, evenly over the cross-sectional area of the resin bed. Once placed, these distributors are not adjustable. The upper distributor should be above (the lower one below) the resin bed, even in the bed s swoUen form. [Pg.379]

The point at which two polymeric chains are joined together by a cross-linker such as divinylbenzene, or sites where tertiary hydrogens are located in the stmcture, are other locations for oxidative attack. In both cation- and anion-exchange resins, oxidative attack results in the removal of cross-linking. [Pg.380]

Uranium ores are leached with dilute sulfuric acid or an alkaline carbonate [3812-32-6] solution. Hexavalent uranium forms anionic complexes, such as uranyl sulfate [56959-61-6], U02(S0 3, which are more selectively adsorbed by strong base anion exchangers than are other anions in the leach Hquors. Sulfate complexes are eluted with an acidified NaCl or ammonium nitrate [6484-52-2], NH NO, solution. Carbonate complexes are eluted with a neutral brine solution. Uranium is precipitated from the eluent and shipped to other locations for enrichment. Columnar recovery systems were popular in South Africa and Canada. Continuous resin-in-pulp (RIP) systems gained popularity in the United States since they eliminated a difficult and cosdy ore particle/leach hquor separation step. [Pg.387]

Phosphorus. Eighty-five percent of the phosphoms, the second most abundant element in the human body, is located in bones and teeth (24,35). Whereas there is constant exchange of calcium and phosphoms between bones and blood, there is very Httle turnover in teeth (25). The Ca P ratio in bones is constant at about 2 1. Every tissue and cell contains phosphoms, generally as a salt or ester of mono-, di-, or tribasic phosphoric acid, as phosphoHpids, or as phosphorylated sugars (24). Phosphoms is involved in a large number and wide variety of metaboHc functions. Examples are carbohydrate metaboHsm (36,37), adenosine triphosphate (ATP) from fatty acid metaboHsm (38), and oxidative phosphorylation (36,39). Common food sources rich in phosphoms are Hsted in Table 5 (see also Phosphorus compounds). [Pg.377]

Fig. 3. Rough layout sketch (/) the two fined heaters F-1 and F-2 are located together but are separated from the other equipment with a subpipeway connecting the process area to the heater area (2) the reboiler E-2 is located adjacent to its column, T-1. The preheat exchanger E-4 is located adjacent to tower T-3 (J) the elevated overhead condenser E-3 is located next to the overhead accumulator V-1. Also, the ain condenser EE-3 is located adjacent to its overhead accumulator V-2 (4) the rest of the ain coolers (EE-1—3, -5) are grouped together ia a common fan stmcture (5) all equipment and related piping is routed to and from the existing piperack saving the addition of a new piperack (6) all pumps (P-1—P-6) are located ia a row under the piperack, and each... Fig. 3. Rough layout sketch (/) the two fined heaters F-1 and F-2 are located together but are separated from the other equipment with a subpipeway connecting the process area to the heater area (2) the reboiler E-2 is located adjacent to its column, T-1. The preheat exchanger E-4 is located adjacent to tower T-3 (J) the elevated overhead condenser E-3 is located next to the overhead accumulator V-1. Also, the ain condenser EE-3 is located adjacent to its overhead accumulator V-2 (4) the rest of the ain coolers (EE-1—3, -5) are grouped together ia a common fan stmcture (5) all equipment and related piping is routed to and from the existing piperack saving the addition of a new piperack (6) all pumps (P-1—P-6) are located ia a row under the piperack, and each...

See other pages where Location exchangers is mentioned: [Pg.101]    [Pg.145]    [Pg.10]    [Pg.340]    [Pg.101]    [Pg.145]    [Pg.10]    [Pg.340]    [Pg.166]    [Pg.1066]    [Pg.952]    [Pg.261]    [Pg.91]    [Pg.180]    [Pg.241]    [Pg.496]    [Pg.204]    [Pg.363]    [Pg.377]    [Pg.387]    [Pg.491]    [Pg.444]    [Pg.448]    [Pg.450]    [Pg.454]    [Pg.244]    [Pg.437]    [Pg.327]    [Pg.76]    [Pg.77]    [Pg.77]    [Pg.77]   
See also in sourсe #XX -- [ Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 ]




SEARCH



Exchangeable cation location

Heat exchanger fluid location

Locating Exchanger Tube Leaks

Resins exchange sites location

© 2024 chempedia.info