Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquor pressure

Relationship between the flow rate an(d liquor pressure... [Pg.120]

The flow model presented in this work can not only output the profile for velocity of the flow within the yam package it can also output the profiles for pressure throughout the package directly. The measurement of flow velocity in different parts of porous packages is practically not possible, while the measurement of pressures inside and outside the package is quite convenient. In order to validate the numerical flow model results, the relationship between the flow rate and liquor pressure throughout the system is required. [Pg.120]

The technique of the filtration of hot solutions has already been described in Section 11,28. The filtration of cold solutions will now be considered this operation is usually carried out when it is desired to separate a crystalline solid from the mother liquor in which it is suspended. When substantial quantities of a solid are to be handled, a Buchner funnel of convenient size is employed. The ordinary Buchner fimnel (Fig. 11,1, 7, a) consists of a cylindrical porcelain funnel carrying a fixed, flat, perforated porcelain plate. It is fitted by means of a rubber stopper or a good cork into the neck of a thick-walled filtering flask (also termed filter flask, Buchner flask or suction flask) (Fig. 11,1, 7, c), which is connected by means of thick-walled rubber tubing (rubber pressure tubing) to a similar flask or safety bottle, and the latter is attached by rubber pressure tubing to a filter pump the safety bottle or trap is essential since a sudden fall in water pressure may result in the water sucking back. The use of suction renders rapid filtration possihle... [Pg.130]

When the volume of mother liquor is large and the amount of crystals small, the apparatus of Fig. II, 32, 1 may be used. The large pear-shaped receiver is supported on a metal ring attached to a stand. When the receiver is about two-thirds fuU, atmospheric pressure is restored by suitably rotating the three-way stopcock the filtrate may then be removed by opening the tap at the lower end. The apparatus is again exhausted and the filtration continued. [Pg.131]

A further 25 g. of cyanoacetamide may be obtained by evaporating the original mother liquor to dryness under reduced pressure (water pump) whilst heating the flask on a steam bath. The residue is dissolved in 50 ml. of hot ethanol, the solution shaken for a few minutes with decolourising carbon, Altered with suction whilst hot, and then cooled in ice. The resulting yellowish amide is recrystallised with the addition of decolourising carbon, if necessary. [Pg.434]

Concentrate the mother liquors from this recrystallisation and combine with the oily filtrate dissolve in 250 ml. of 10 per cent, sodium hydroxide solution, and extract with two 50 ml. portions of ether to remove non-phenolic products. Acidify the alkaline solution with hydrochloric acid, separate the oily layer, dry it over anhydrous magnesium sulphate, and distil under diminished pressure, preferably from a Claisen flask with fractionating side arm (Figs. II, 24, 2-5). Collect the o-propiophenol (65 g.) at 110-115°/6 mm. and a further quantity (20 g.) of crude p-propiophenol at 140-150°/ 1 mm. [Pg.676]

Phthalide. In a 1 litre bolt-head flask stir 90 g. of a high quality zinc powder to a thick paste with a solution of 0 5 g. of crystallised copper sulphate in 20 ml. of water (this serves to activate the zinc), and then add 165 ml. of 20 per cent, sodium hydroxide solution. Cool the flask in an ice bath to 5°, stir the contents mechanically, and add 73-5 g. of phthalimide in small portions at such a rate that the temperature does not rise above 8° (about 30 minutes are required for the addition). Continue the stirring for half an hour, dilute with 200 ml. of water, warm on a water bath imtil the evolution of ammonia ceases (about 3 hours), and concentrate to a volume of about 200 ml. by distillation vmder reduced pressure (tig. 11,37, 1). Filter, and render the flltrate acid to Congo red paper with concentrated hydrochloric acid (about 75 ml. are required). Much of the phthalide separates as an oil, but, in order to complete the lactonisation of the hydroxymethylbenzoic acid, boil for an hour transfer while hot to a beaker. The oil solidifles on cooling to a hard red-brown cake. Leave overnight in an ice chest or refrigerator, and than filter at the pump. The crude phthalide contains much sodium chloride. RecrystaUise it in 10 g. portions from 750 ml. of water use the mother liquor from the first crop for the recrystaUisation of the subsequent portion. Filter each portion while hot, cool in ice below 5°, filter and wash with small quantities of ice-cold water. Dry in the air upon filter paper. The yield of phthalide (transparent plates), m.p. 72-73°, is 47 g. [Pg.772]

A further small quantity may be recovered from the mother liquors by removing the solvent at atmospheric pressure and distilling the residue under reduced pressure the anhydride passes over at 184-186°/ 8 mm. [Pg.989]

Ammonia is readily absorbed ia water to make ammonia liquor. Figure 2 summarizes the vapor—Hquid equiUbria of aqueous ammonia solutions and Figure 3 shows the solution vapor pressures. Additional thermodynamic properties may be found ia the Hterature (1,2). Considerable heat is evolved duriag the solution of ammonia ia water approximately 2180 kJ (520 kcal) of heat is evolved upon the dissolution of 1 kg of ammonia gas. [Pg.336]

Preparation from Waste Sulfite Liquors. The starting material for vanillin production can also be the lignin (qv) present in sulfite wastes from the ceUulose industry. The concentrated mother Hquors are treated with alkaH at elevated temperature and pressure in the presence of oxidants. The vanillin formed is separated from the by-products, particularly acetovanillone, 4-hydroxy-3-methoxyacetophenone, by extraction, distillation, and crystallization. [Pg.396]

In a submerged-tube FC evaporator, all heat is imparted as sensible heat, resulting in a temperature rise of the circulating hquor that reduces the overall temperature difference available for heat transfer. Temperature rise, tube proportions, tube velocity, and head requirements on the circulating pump all influence the selec tion of circulation rate. Head requirements are frequently difficult to estimate since they consist not only of the usual friction, entrance and contraction, and elevation losses when the return to the flash chamber is above the liquid level but also of increased friction losses due to flashing in the return line and vortex losses in the flash chamber. Circulation is sometimes limited by vapor in the pump suction hne. This may be drawn in as a result of inadequate vapor-liquid separation or may come from vortices near the pump suction connection to the body or may be formed in the line itself by short circuiting from heater outlet to pump inlet of liquor that has not flashed completely to equilibrium at the pressure in the vapor head. [Pg.1139]

Knitted wire mesh serves as an effective entrainment separator when it cannot easily be foiiled by sohds in the liquor. The mesh is available in woven metal wire of most alloys and is installed as a blanket across the top of the evaporator (Fig. ll-122d) or in a monitor of reduced diameter atop the vapor head. These separators have low-pressure drops, usually on the order of 13 mm [ M in) of water, and collection efficiency is above 99.8 percent in the range of vapor velocities from 2.5 to 6 iti/s (8 to 20 ft/s) [Carpenter and Othmer, Am. nsi. Chem. [Pg.1142]

Cycloocta l,5-dlona-2 -(or 3 )earboxyllc acid mattiyl aster (3) (4), A solution d eyclohe)(a-1,3-dlone 1 (1.00 g, 8.9 mmol) in methyl acrylate 2 (100 g. 1.16 mmol) was Irradiated with a X 450 W medkjm pressure lamp under Na through a pyrex (Iter (or 5 h. The semicrystalliM residue obtained after removal oi the solvent, was crystallized from MeOH, the n ther liquor, separated by preparative TLC (PhH Et20) and the main fraction oonMned vrilh the crystals to gM 1.06 g of 3 (60%), mp 104-105°C (MeOH), The second minor fraction (from TLC) gave 4, mp 91 C (MeOH). [Pg.92]

The free base tends to become oxidized in the air but may be preserved as the hydrochloride. This is prepared by transferring it as soon as possible to 1500 cc. of distilled water containing 100 cc. of concentrated hydrochloric acid. The sparingly soluble hydrochloride separates at once. It is recrystallized from the mixture with the use of a little decolorizing carbon, whereupon it separates as colorless needles. A further crop is obtained on concentrating the mother liquor under reduced pressure to about 200 cc. The yield is no g. (82.1 per cent of the theoretical amount). [Pg.94]

For purification the acid is crystallized from about 150 cc. of glacial acetic acid, using an acid-resistant filter for the hot solution (Note 7). Aconitic acid separates as small, colorless needles weighing 50-60 g., and about 10 g. more can be secured by concentrating the mother liquor under reduced pressure to one-third of its volume. The material is dried in the air and then in a desiccator containing sodium hydroxide in order to remove all traces of acetic acid. One crystallization usually is sufficient to bring the point of decomposition to 198-199° (Note 6). [Pg.2]

The reaction mixture is filtered with suction and the cake is washed thoroughly with two 200-ml. portions of glacial acetic acid (Note 4). The combined filtrate and washings are evaporated under reduced pressure on the steam bath until a thick oil, which generally partially crystallizes, remains. To purify the crude product, 100 ml. of water is added, and the flask is warmed on a steam bath until the solid melts. The mixture of water and oil is stirred rapidly in an ice bath, and diethyl acetamidomalonate crystallizes as a fine white product. After cooling in an ice bath for an additional hour, the product is collected by filtration, washed once with cold water, and dried in air at 50°. A second crop is obtained by concentrating the mother liquor under reduced pressure. The yield of diethyl acetamidomalonate, m.p. 95-97° (Note 5), is 52-53 g. (77-78%) based on malonic ester. [Pg.22]

The application of lignin as an adhesive is possible in principle. The first attempt needed very long press times due to the low reactivity (Pedersen process) [161]. This process was based on lignin polycondensation under strong acidic conditions, which led to considerable corrosion problems in the plant [161]. The particles had been sprayed with spent sulfite liquor (pH = 3-4) and pressed at 180°C. After this step, the boards were tempered in an autoclave under pressure at 170-200°C, whereby the sulfite liquor became insoluble after splitting off water and SO2. [Pg.1073]

A low-pressure-drop liquid cyclone is sometimes used to clarify liquor discharged from the evaporator. The driving force is the pressure drop across the circulating pump. Thickened slurry is returned through a wide-open cyclone underflow connection to the circulating piping before the pump suction. [Pg.97]


See other pages where Liquor pressure is mentioned: [Pg.184]    [Pg.19]    [Pg.131]    [Pg.767]    [Pg.795]    [Pg.988]    [Pg.134]    [Pg.17]    [Pg.367]    [Pg.1140]    [Pg.1141]    [Pg.1144]    [Pg.1352]    [Pg.1358]    [Pg.1665]    [Pg.2397]    [Pg.21]    [Pg.40]    [Pg.9]    [Pg.425]    [Pg.24]    [Pg.13]    [Pg.79]    [Pg.94]    [Pg.96]    [Pg.106]    [Pg.116]    [Pg.137]    [Pg.156]    [Pg.239]    [Pg.265]   


SEARCH



Liquor

Liquor pressure equation

© 2024 chempedia.info