Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids, bulk properties

Returning to multilayer adsorption, the potential model appears to be fundamentally correct. It accounts for the empirical fact that systems at the same value of / rin P/F ) are in essentially corresponding states, and that the multilayer approaches bulk liquid in properties as P approaches F. However, the specific treatments must be regarded as still somewhat primitive. The various proposed functions for U r) can only be rather approximate. Even the general-appearing Eq. XVn-79 cannot be correct, since it does not allow for structural perturbations that make the film different from bulk liquid. Such perturbations should in general be present and must be present in the case of liquids that do not spread on the adsorbent (Section X-7). The last term of Eq. XVII-80, while reasonable, represents at best a semiempirical attempt to take structural perturbation into account. [Pg.654]

The correct treatment of boundaries and boundary effects is crucial to simulation methods because it enables macroscopic properties to be calculated from simulations using relatively small numbers of particles. The importance of boundary effects can be illustrated by considering the following simple example. Suppose we have a cube of volume 1 litre which is filled with water at room temperature. The cube contains approximately 3.3 X 10 molecules. Interactions with the walls can extend up to 10 molecular diameters into the fluid. The diameter of the water molecule is approximately 2.8 A and so the number of water molecules that are interacting with the boundary is about 2 x 10. So only about one in 1.5 million water molecules is influenced by interactions with the walls of the container. The number of particles in a Monte Carlo or molecular dynamics simulation is far fewer than 10 -10 and is frequently less than 1000. In a system of 1000 water molecules most, if not all of them, would be within the influence of the walls of the boundary. Clecirly, a simulation of 1000 water molecules in a vessel would not be an appropriate way to derive bulk properties. The alternative is to dispense with the container altogether. Now, approximately three-quarters of the molecules would be at the surface of the sample rather than being in the bulk. Such a situation would be relevcUit to studies of liquid drops, but not to studies of bulk phenomena. [Pg.331]

Finally, the molecules in all layers above the first are postulated to have the same partition function 9, as in the bulk liquid, so that 9, = 9, j,j for i > 1. This is of course equivalent to the BET assumption of liquid-like properties for these higher layers. [Pg.45]

In general there are two factors capable of bringing about the reduction in chemical potential of the adsorbate, which is responsible for capillary condensation the proximity of the solid surface on the one hand (adsorption effect) and the curvature of the liquid meniscus on the other (Kelvin effect). From considerations advanced in Chapter 1 the adsorption effect should be limited to a distance of a few molecular diameters from the surface of the solid. Only at distances in excess of this would the film acquire the completely liquid-like properties which would enable its angle of contact with the bulk liquid to become zero thinner films would differ in structure from the bulk liquid and should therefore display a finite angle of contact with it. [Pg.123]

Eirst of all, what is meant by a solid surface Ideally the surface should be defined as the plane at which the solid terminates, that is, the last atom layer before the adjacent phase (vacuum, vapor, liquid, or another solid) begins. Unfortunately such a definition is impractical because the effect of termination extends into the solid beyond the outermost atom layer. Indeed, the current definition is based on that knowledge, and the surface is thus regarded as consisting of that number of atom layers over which the effect of termination of the solid decays until bulk properties are reached. In practice, this decay distance is of the order of 5-20 nm. [Pg.1]

Ultimately physical theories should be expressed in quantitative terms for testing and use, but because of the eomplexity of liquid systems this can only be accomplished by making severe approximations. For example, it is often neeessary to treat the solvent as a continuous homogeneous medium eharaeterized by bulk properties such as dielectric constant and density, whereas we know that the solvent is a molecular assemblage with short-range structure. This is the basis of the current inability of physical theories to account satisfactorily for the full scope of solvent effects on rates, although they certainly can provide valuable insights and they undoubtedly capture some of the essential features and even cause-effect relationships in solution kinetics. Section 8.3 discusses physical theories in more detail. [Pg.388]

The surface tension 7 is a measure of the work required to create unit area of surface from molecules in the bulk it is expressed in ergs per square centimeter or dynes per centimeter. The surface tension is a bulk property, not a molecular property. There appears to be some trend of y with other measures of polarity, but a lower limit of y is reached with very nonpolar liquids this limit (evidently about 15 dyn/cm) reflects the ever-present dispersion force between the molecules of liquid. [Pg.391]

Bonhote and co-workers [10] reported that ILs containing triflate, perfluorocar-boxylate, and bistrifylimide anions were miscible with liquids of medium to high dielectric constant (e), including short-chain alcohols, ketones, dichloromethane, and THF, while being immiscible with low dielectric constant materials such as alkanes, dioxane, toluene, and diethyl ether. It was noted that ethyl acetate (e = 6.04) is miscible with the less-polar bistrifylimide and triflate ILs, and only partially miscible with more polar ILs containing carboxylate anions. Brennecke [15] has described miscibility measurements for a series of organic solvents with ILs with complementary results based on bulk properties. [Pg.76]

Chapter I has been reorganized in this edition to give readers a gentler introduction to atoms and their structure. Atoms and molecules, including discussions of quantum mechanics and molecular orbitals, provide the foundation for understanding bulk properties and models of gases, liquids, and solids. [Pg.14]

We have to refine our atomic and molecular model of matter to see how bulk properties can be interpreted in terms of the properties of individual molecules, such as their size, shape, and polarity. We begin by exploring intermolecular forces, the forces between molecules, as distinct from the forces responsible for the formation of chemical bonds between atoms. Then we consider how intermolecular forces determine the physical properties of liquids and the structures and physical properties of solids. [Pg.299]

In simple single-site liquid crystal models, such as hard-ellipsoids or the Gay-Berne potential, a number of elegant techniques have been devised to calculate key bulk properties which are useful for display applications. These include elastic constants for nematic systems [87, 88]. However, these techniques are dependent on large systems and long runs, and (at the present time) limitations in computer time prevent the extension of these methods to fully atomistic models. [Pg.59]

B bulk property d deactivation e effective property G gas phase i component index i reaction index L liquid phase p catalyst particle property equilibrium conditions... [Pg.185]

The emersed electrode, in principle, may be treated as the experimental realization of a single electrode. However, it is doubtful whether its liquid layer has the same bulk properties. This is probably the main reason for the different results of E°H(abs) found for emersed electrodes, e.g., -4.85 V.83 Samec et al. have found that emersion of electrodes in a nitrogen atmosphere decreases the Volta potential and therefore the absolute electrode potential by ca. 0.32 V relative to the value in solution. They have attributed this mainly to the reorientation of the water molecules at the free surface. [Pg.32]

The recent liquid phase synthetic techniques provide us the metal nanoparticles with the standard deviation smaller than 10%. So a lot of scientists have been attracted by an investigation on the transition from molecular to bulk properties from both the fundamental and technological points of view. Here we present our recent liquid phase techniques to control the size and composition of Au and FePt nanoparticles. [Pg.361]

Critical Binder Liquid/Powder Ratio. When a liquid is mixed into a bulk powder made of fine particles, the liquid distributes itself first into small spaces between particles forming liquid bridges as can be seen in Fig. 12a. For very small amounts of liquid, these bridges are randomly spaced and do not influence the bulk properties of the powder. Upon introduction of larger... [Pg.368]

Due to the core importance of the SEI formation on carbonaceous anodes, the majority of the research activities on additives thus far aim at controlling the chemistry of the anode/electrolyte interface, although the number of publications related to this topic is rather limited as compared with the actual scale of interest by the industry. Table 9 summarizes the additives that have been described in the open literature. In most cases, the concentration of these interface-targeted additives is expected to be kept at a minimum so that the bulk properties of the electrolytes such as ion conduction and liquid ranges would not be discernibly affected. In other words, for an ideal anode additive, its trace presence should be sufficient to decouple the interfacial from bulk properties. Since there is no official standard available concerning the upper limit on the additive concentration, the current review will use an arbitrary criterion of 10% by weight or volume, above which the added component will be treated as a cosolvent instead of an additive. [Pg.127]

Contrary to a fluid in the gaseous state, a liquid has a surface, and is characterized by a surface tension. For water, the surface tension is 72 mN m" at 25°C [1,2]. Again, contrary to the fluid in the gaseous state, the volume of a liquid does not change appreciably under pressure it has a low compressibility and shares this property with matter in the solid (crystalline, glassy, or amorphous) state. For water, the compressibility is 0.452 (GPa)" at 25°C [1,2]. These are macroscopic, or bulk, properties that single out the liquid state from other states of aggregation of matter. [Pg.37]

The development of various techniques has led to important advances. The possibility to measure intermolecular and intercolloidal forces directly represents a qualitative change from the indirect way such forces had been inferred in the past from aggregation kinetics or from bulk properties such as the compressibility (deduced from small angle scattering) or phase behavior. Both static (i.e., equilibrium) and dynamic (e.g., viscous) forces can now be directly measured, providing information not only on the fundamental interactions in liquids but also on the structure... [Pg.52]

More recently, Yang and Thompson implemented this type of sensor in FI manifolds, which they consider ideal environments for relating the sensor s hydrodynamic response to the analyte s concentration-time profile produced by the dispersion behaviour of sample zones. Network analysis of the sensor generates multi-dimensional information on the bulk properties of the liquid sample and surface properties at the liquid/solid interface. The relationship between acoustic energy transmission and the interfacial structure, viscosity, density and dielectric constant of the analyte have been thoroughly studied by using this type of assembly [171]. [Pg.144]

For liquids, even simple monatomic liquids such as molten metals, this link between molecular interactions and a bulk property such as viscosity is still there, in principle, but it is difficult to derive a relationship from fundamental interaction energies that is useful for a wide variety of systems. Nonetheless, theoretical expressions for liquid viscosities do exist. Some are based on statistical mechanical arguments, but the model that is most consistent with the discussion so far is that of nonattracting hard spheres... [Pg.288]

Physical properties of the solvent are used to describe polarity scales. These include both bulk properties, such as dielectric constant (relative permittivity), refractive index, latent heat of fusion, and vaporization, and molecular properties, such as dipole moment. A second set of polarity assessments has used measures of the chemical interactions between solvents and convenient reference solutes (see table 3.2). Polarity is a subjective phenomenon. (To a synthetic organic chemist, dichloromethane may be a polar solvent, whereas to an inorganic chemist, who is used to water, liquid ammonia, and concentrated sulfuric acid, dichloromethane has low polarity.)... [Pg.54]

The familiar bulk properties of a solid, liquid, and gas. (a) The submicroscopic particles of the solid phase vibrate about fixed positions, (b) The submicroscopic particles of the liquid phase slip past one another. [Pg.22]

Molecular properties can be classified according to their end-poinl observables, such as chemical I reactivity. solubility, acid-basel. physical (a function of physical state gas. liquid, solid thermodynamic), or biological (ligand or enzyme agonist or antagonist). These properties reflect macroscopic, or bulk, properties, which exist only for the bulk material, e.g.. heat of crystallization, ur microscopic properties, which exist for an ensemble of the molecule. As use of CAMM methods... [Pg.1028]


See other pages where Liquids, bulk properties is mentioned: [Pg.347]    [Pg.653]    [Pg.18]    [Pg.703]    [Pg.14]    [Pg.606]    [Pg.299]    [Pg.54]    [Pg.229]    [Pg.312]    [Pg.139]    [Pg.54]    [Pg.182]    [Pg.53]    [Pg.31]    [Pg.131]    [Pg.332]    [Pg.190]    [Pg.284]    [Pg.597]    [Pg.140]    [Pg.195]    [Pg.284]    [Pg.51]    [Pg.149]    [Pg.284]   
See also in sourсe #XX -- [ Pg.409 , Pg.410 , Pg.411 , Pg.412 , Pg.413 , Pg.414 ]




SEARCH



Bulk liquid

Bulk properties

Liquid , properties

© 2024 chempedia.info