Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid injection pressure

B) Flat Liquid Sheets into Air Streams Mechanical and Aerodynamic Disintegration. In air streams (with an air flow), a liquid sheet issuing from the 2-D nozzle will form a quasi-2-D expanding spray. The breakup modes are divided into two groups (1) mechanical mode due to the action of liquid injection pressure, and (2) aerodynamic mode due to the action of air friction. [Pg.156]

The variations of the mean droplet size and the droplet size distribution with axial distance in a spray generated by pressure swirl atomizers have been shown to be a function of ambient air pressure and velocity, liquid injection pressure, and initial mean droplet size and distribution 460]... [Pg.261]

The studies on the performance of effervescent atomizer have been very limited as compared to those described above. However, the results of droplet size measurements made by Lefebvre et al.t87] for the effervescent atomizer provided insightful information about the effects of process parameters on droplet size. Their analysis of the experimental data suggested that the atomization quality by the effervescent atomizer is generally quite high. Better atomization may be achieved by generating small bubbles. Droplet size distribution may follow the Rosin-Rammler distribution pattern with the parameter q ranging from 1 to 2 for a gas to liquid ratio up to 0.2, and a liquid injection pressure from 34.5 to 345 kPa. The mean droplet size decreases with an increase in the gas to liquid ratio and/or liquid injection pressure. Any factor that tends to impair atomization quality, and increase the mean droplet size (for example, decreasing gas to liquid ratio and/or injection pressure) also leads to a more mono-disperse spray. [Pg.275]

The decrease in the mean droplet size with increasing liquid injection pressure may be attributed to two effects. First, the high pressure-drop across the exit orifice makes the process more like a pressure atomization at high pressure. Second, the liquid is squeezed into fine ligaments as it flows through the injector orifice, and the ligaments are shattered into small droplets by the explosion downstream of the nozzle exit. [Pg.275]

Liquid-Injection Molding. In Hquid-injection mol ding (LIM), monomers and oligomers are injected into a mold cavity where a rapid polymerization takes place to produce a thermoset article. Advantages of these processes are low cost, low pressure requirement, and flexibiHty in mold configuration. Conventional systems, such as isocyanate with polyol, release Htfle or no volatiles. The generation of substantial volatiles in the mold is obviously undesirable and has represented a significant obstacle to the development of a phenoHc-based LIM system. A phenoHc LIM system based on an... [Pg.307]

The values for polytropic conditions represent an uncooled compressor, that is, no internal diaphragm cooling, no liquid injection, and no external coolers for the pressure range being considered. [Pg.497]

It may be noted that energy will be required for compressing the air to the injection pressure which must exceed the upstream pressure in the pipeline. The conditions under which power-saving is achieved have been examined by DZIUB1NSKI(25j. who has shown that the relative efficiency of the liquid pump and the air compressor are critically important factors. [Pg.194]

Injection pump. An injection pump is used to force the waste into the injection zone, although in very porous formations, such as cavernous limestone, the hydrostatic pressure of the waste column in the well is sufficient. The type of pump is determined primarily by the well-head pressures required, the volume of liquid to be injected, and the corrosiveness of the waste. Single-stage centrifugal pumps are used in systems that require well-head pressures up to about 10.5 kg/cm2 (150 psi), and multiplex piston pumps are used to achieve higher injection pressures. [Pg.788]

Chemical reactions may result from interactions among and between the three phases of matter solid, liquid, and gas. The major interactions that occur in the deep-well environment are those between different liquids (injected waste with reservoir fluids) and those between liquids and solids (injected wastes and reservoir fluids with reservoir rock). Although gases may exist, they are usually dissolved in liquid at normal deep-well pressures. [Pg.791]

This study investigates the retention behavior of dilute polymer solutions in oil sands. Results indicate that the presence of a large amount of fines and/or a variety of minerals in the sand may result in high adsorption and retention causing excessive loss of polymer and high injection pressures. Injection of a surfactant with the polymer leads to increased oil recoveries because the dilute polymer may selectively adsorb on mineral grain surfaces leaving the surfactant to act at liquid/iiquid contacts. [Pg.244]

A hollow-cone spray can be generated via a simplex atomizer. The spray pattern varies depending on the injection pressure. At very low pressures, liquid dribbles from the nozzle orifice. With increasing pressure, the liquid emerges from the orifice as a thin,... [Pg.29]

Solid-cone spray atomizers usually generate relatively coarse droplets. In addition, the droplets in the center of the spray cone are larger than those in the periphery. In contrast, hollow-cone spray atomizers produce finer droplets, and the radial liquid distribution is also preferred for many industrial applications, particularly for combustion applications. However, in a simplex atomizer, the liquid flow rate varies as the square root of the injection pressure. To double the flow rate, a fourfold increase in the injection pressure is... [Pg.30]

As mentioned in the previous section, a major drawback of the simplex atomizer is the poor atomization quality at the lowest flow rate due to too-low pressure differential if swirl ports are sized to allow the maximum flow rate at the maximum injection pressure. This problem may be resolved by using dual-orifice, duplex, or spill-return atomizers. Alternatively, the atomization processes at low injection pressures can be augmented via forced aerodynamic instabilities by using air or gas stream(s) or jet(s). This is based on the beneficial effect of flowing air in assisting the disintegration of a liquid j et or sheet, as recognized in the application of the shroud air in fan spray and pressure-swirl atomization. [Pg.37]

Recently, Razumovskid441 studied the shape of drops, and satellite droplets formed by forced capillary breakup of a liquid jet. On the basis of an instability analysis, Teng et al.[442] derived a simple equation for the prediction of droplet size from the breakup of cylindrical liquid jets at low-velocities. The equation correlates droplet size to a modified Ohnesorge number, and is applicable to both liquid-in-liquid, and liquid-in-gas jets of Newtonian or non-Newtonian fluids. Yamane et al.[439] measured Sauter mean diameter, and air-entrainment characteristics of non-evaporating unsteady dense sprays by means of an image analysis technique which uses an instantaneous shadow picture of the spray and amount of injected fuel. Influences of injection pressure and ambient gas density on the Sauter mean diameter and air entrainment were investigated parametrically. An empirical equation for the Sauter mean diameter was proposed based on a dimensionless analysis of the experimental results. It was indicated that the Sauter mean diameter decreases with an increase in injection pressure and a decrease in ambient gas density. It was also shown that the air-entrainment characteristics can be predicted from the quasi-steady jet theory. [Pg.257]

Pressure nozzles are most suited to low viscosity liquids and, where possible, viscous liquids should be preheated to ensure the minimum viscosity at the nozzle. Because of their simplicity, pressure nozzles are also employed to atomise viscous liquids with a kinematic viscosity up to 0.01 m2/s, depending upon the nozzle capacity. Under these conditions, injection pressures of up to 50 MN/m2 may be required to produce the required particle size. With slurries, the resulting high liquid velocities may cause severe erosion of the orifice and thus necessitate frequent replacement. [Pg.943]

Fig. 2.25.1. Cross-section of a two-stage com- pressure MP, middle pressure HP, high pres-pressor (Bitzer Kiihlmaschinenbau GmbH, sure LI, liquid injection. Fig. 2.25.1. Cross-section of a two-stage com- pressure MP, middle pressure HP, high pres-pressor (Bitzer Kiihlmaschinenbau GmbH, sure LI, liquid injection.
Sample introduction is a major hardware problem for SFC. The sample solvent composition and the injection pressure and temperature can all affect sample introduction. The high solute diffusion and lower viscosity which favor supercritical fluids over liquid mobile phases can cause problems in injection. Back-diffusion can occur, causing broad solvent peaks and poor solute peak shape. There can also be a complex phase behavior as well as a solubility phenomenon taking place due to the fact that one may have combinations of supercritical fluid (neat or mixed with sample solvent), a subcritical liquified gas, sample solvents, and solute present simultaneously in the injector and column head [2]. All of these can contribute individually to reproducibility problems in SFC. Both dynamic and timed split modes are used for sample introduction in capillary SFC. Dynamic split injectors have a microvalve and splitter assembly. The amount of injection is based on the size of a fused silica restrictor. In the timed split mode, the SFC column is directly connected to the injection valve. Highspeed pneumatics and electronics are used along with a standard injection valve and actuator. Rapid actuation of the valve from the load to the inject position and back occurs in milliseconds. In this mode, one can program the time of injection on a computer and thus control the amount of injection. In packed-column SFC, an injector similar to HPLC is used and whole loop is injected on the column. The valve is switched either manually or automatically through a remote injector port. The injection is done under pressure. [Pg.381]


See other pages where Liquid injection pressure is mentioned: [Pg.48]    [Pg.163]    [Pg.254]    [Pg.256]    [Pg.259]    [Pg.260]    [Pg.263]    [Pg.264]    [Pg.48]    [Pg.163]    [Pg.254]    [Pg.256]    [Pg.259]    [Pg.260]    [Pg.263]    [Pg.264]    [Pg.55]    [Pg.1437]    [Pg.162]    [Pg.328]    [Pg.191]    [Pg.810]    [Pg.26]    [Pg.27]    [Pg.30]    [Pg.31]    [Pg.32]    [Pg.36]    [Pg.345]    [Pg.479]    [Pg.168]    [Pg.360]    [Pg.248]    [Pg.61]    [Pg.45]    [Pg.246]    [Pg.83]    [Pg.590]    [Pg.122]    [Pg.239]    [Pg.545]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Injection pressure

Liquid injection

© 2024 chempedia.info