Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid electrolytes electrolyte products

A number of attempts to produce tire refractory metals, such as titanium and zirconium, by molten chloride electrolysis have not met widr success with two exceptions. The electrolysis of caesium salts such as Cs2ZrCl6 and CsTaCle, and of the fluorides Na2ZrF6 and NaTaFg have produced satisfactoty products on the laboratory scale (Flengas and Pint, 1969) but other systems have produced merely metallic dusts aird dendritic deposits. These observations suggest tlrat, as in tire case of metal deposition from aqueous electrolytes, e.g. Ag from Ag(CN)/ instead of from AgNOj, tire formation of stable metal complexes in tire liquid electrolyte is the key to success. [Pg.349]

The preparation and properties of a novel, commercially viable Li-ion battery based on a gel electrolyte has recently been disclosed by Bellcore (USA) [124]. The technology has, to date, been licensed to six companies and full commercial production is imminent. The polymer membrane is a copolymer based on PVdF copolymerized with hexafluoropropylene (HFP). HFP helps to decrease the crystallinity of the PVdF component, enhancing its ability to absorb liquid. Optimizing the liquid absorption ability, mechanical strength, and processability requires optimized amorphous/crystalline-phase distribution. The PVdF-HFP membrane can absorb plasticizer up to 200 percent of its original volume, especially when a pore former (fumed silica) is added. The liquid electrolyte is typically a solution of LiPF6 in 2 1 ethylene carbonate dimethyl car-... [Pg.517]

FIGURE 14.17 A diaphragm cell tor the electrolytic production of sodium hydroxide from brine (aqueous sodium chloride solution), represented by the blue color. The diaphragm (gold color) prevents the chlorine produced at the titanium anodes from mixing with the hydrogen and the sodium hydroxide formed at the steel cathodes. The liquid (cell liquor) is drawn off and the water is partly evaporated. The unconverted sodium chloride crystallizes, leaving the sodium hydroxide dissolved in the cell liquor. [Pg.711]

C19-0036. Explain why neither aqueous KF nor pure liquid HF can be used for the electrolytic production of fluorine, even though both liquids are easier to handle than molten potassium fluoride. [Pg.1415]

Reactions (5.5.30) and (5.5.31) proceed prevailingly during intercalation from solid or polymer electrolytes (cf. Section 2.6) or melts. When using common liquid electrolyte solutions, a co-insertion of solvent molecules (and/or intercalation of solvated ions) very often occurs. The usual products of electrochemical intercalation are therefore ternary compounds of a general composition ... [Pg.328]

For a battery to give a reasonable power output, the ionic conductivity of the electrolyte must be substantial. Historically, this was achieved by the use of liquid electrolytes. However, over the last quarter of a century there has been increasing emphasis on the production of batteries and related devices employing solid electrolytes. These are sturdy and ideal for applications where liquid electrolytes pose problems. The primary technical problem to overcome is that of achieving high ionic conductivity across the solid. [Pg.252]

Gel polymer lithium-ion batteries replace the conventional liquid electrolytes with an advanced polymer electrolyte membrane. These cells can be packed in lightweight plastic packages as they do not have any free electrolytes and they can be fabricated in any desired shape and size. They are now increasingly becoming an alternative to liquid-electrolyte lithium-ion batteries, and several battery manufacturers. such as Sanyo. Sony, and Panasonic have started commercial production.Song et al. have recently reviewed the present state of gel-type polymer electrolyte technology for lithium-ion batteries. They focused on four plasticized systems, which have received particular attention from a practical viewpoint, i.e.. poly(ethylene oxide) (PEO). poly (acrylonitrile) (PAN). ° poly (methyl methacrylate) (PMMA). - and poly(vinylidene fluoride) (PVdF) based electrolytes. ... [Pg.202]

The PVdF—HFP separators used in PLION cells were around 3 mil thick, and had poor mechanical properties. It has been reported that the major source of rate limitation in PLION cells was the separator thickness. The rate capability of these cells can be significantly improved by decreasing the separator thickness to that typically used in liquid electrolyte system. Moreover, in the absence of shutdown function. the separator does not contribute to cell safety in any way. Park et al. reported that the HFP content in separators did not have any significant impact on cell performance. The Bellcore process has proven to be an elegant laboratory process but is difficult to implement in large-scale production. [Pg.202]

Further examples of recent attempts to reduce the consumption of electrical energy are the electrolysis of aqueous solutions of methanol (but CO2 is still produced at the anode) [78, 79] and water electrolysis using ionic liquids as electrolytes [80]. In the latter case, the authors claimed the possibility of obtaining high hydrogen production efficiencies using an inexpensive material such as low-carbon steel. [Pg.266]

Much of the recent research in solid state chemistry is related to the ionic conductivity properties of solids, and new electrochemical cells and devices are being developed that contain solid, instead of liquid, electrolytes. Solid-state batteries are potentially useful because they can perform over a wide temperature range, they have a long shelf life, it is possible to make them very small, and they are spill-proof We use batteries all the time—to start cars, in toys, watches, cardiac pacemakers, and so on. Increasingly we need lightweight, small but powerful batteries for a variety of uses such as computer memory chips, laptop computers, and mobile phones. Once a primary battery has discharged, the reaction cannot be reversed and it has to be thrown away, so there is also interest in solid electrolytes in the production of secondary or storage batteries, which are reversible because once the chemical reaction has taken place the reactant concentrations can be... [Pg.215]

Numerous other types of cell have been devised, and several of these have a much greater efficiency than the Hermite cell—e.g. K. Kellner s,2 Schuckert and Co. s, ML Haas and E. Oettel s, and P. Schoop s systems. The electrolytic production of chlorine and caustic soda, of bleaching liquors, and of disinfecting liquid—e.g. the so-called Dakin s solution—are growing industries. [Pg.277]

By contrast, electrolyte states are much more limited in their distribution than metal conduction band states so that in many cases electron transfer through surface states may be the dominant process in semiconductor-electrolyte junctions. On the other hand, in contrast to vacuum and insulators, liquid electrolytes allow substantial interaction at the interface. Ionic currents flow, adsorption and desorption take place, solvent molecules fluctuate around ions and reactants and products diffuse to and from the surface. The reactions and kinetics of these processes must be considered in analyzing the behavior of surface states at the semiconductor-electrolyte junction. Thus, at the semiconductor-electrolyte junction, surface states can interact strongly with the electrolyte but from the point of view of the semiconductor the reaction of surface states with the semiconductor carriers should still be describable by equations 1 and 2. [Pg.106]

There have been severe criticisms about the extended use of chlorine gas in industry, owing to concern primarily derived from its ability to form toxic chlorinated organic compounds. In order to avoid its co-production during the electrolytic production of sodium hydroxide, a process has been developed in which a sodium carbonate (soda ash) solution is used as the anolyte in an electrochemical reactor divided by an ion-exchange membrane. Hydrogen gas is produced at the cathode and sent to a gas diffusion anode. Assuming no by-products in the liquid phase and only one by-product in the gas phase ... [Pg.531]

A pilot line for producing large numbers of small modules also provides important knowledge for the future production of much larger solar panels for outdoor use, where the long term cost target should be less than 1 euro/Wp. The most important issue to be solved is intrinsic stability and particularly thermal stability. A major concern remains the use of a liquid electrolyte. Practical experience will have to demonstrate feasibility. [Pg.288]

These strategies are interesting for the production of H2 and 02 from water by a photoelectrochemical approach, but in the case of C02, it is necessary to (1) avoid the use of a liquid electrolyte (to eliminate problems of C02 solubility, diffusion limitation due to double layer, solvent competition, and to simplify cell sealing and facilitate product recovery eliminating the solvent), (2) have the anodic and cathodic reactions in separate compartments (reduce separation costs and eliminate safety... [Pg.392]


See other pages where Liquid electrolytes electrolyte products is mentioned: [Pg.322]    [Pg.70]    [Pg.118]    [Pg.253]    [Pg.306]    [Pg.539]    [Pg.607]    [Pg.330]    [Pg.329]    [Pg.20]    [Pg.216]    [Pg.322]    [Pg.255]    [Pg.317]    [Pg.75]    [Pg.309]    [Pg.477]    [Pg.80]    [Pg.295]    [Pg.278]    [Pg.70]    [Pg.155]    [Pg.282]    [Pg.74]    [Pg.173]    [Pg.88]    [Pg.135]    [Pg.3]    [Pg.289]    [Pg.235]    [Pg.268]    [Pg.230]    [Pg.385]    [Pg.390]   
See also in sourсe #XX -- [ Pg.337 , Pg.338 ]




SEARCH



Electrolytic Production

Liquid electrolytes

Liquid electrolytes production

Liquid electrolytes production

Liquid production

© 2024 chempedia.info