Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipid phosphatidylethanolamine

Hope, M.J., Mui, B., Ansell, S. and Ahkong, Q.F. (1998) Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs. Mol. Membr. Biol., 15, 1-14. [Pg.62]

Lipid A, which anchors lipopolysaccharide in the membrane, is made first. Hydroxy acids are added first to the disaccharide, followed by KDO and then saturated fatty acids. The hydroxy fatty acids come from acyl-CoA substrates whereas CMP-KDO is the source of the second addition units. After the addition of saturated fatty acids, sugars are added from nucleotide diphosphate derivatives. Various deficient mutants which lack either glucosyl- or galactosyl-transferase have been isolated. These reactions build one half of the molecule. Another lipid, phosphatidylethanolamine, has been suggested to be intimately involved in the binding of the transferase enzymes to the lipopolysaccharide acceptor. [Pg.287]

The major lipid classes are phospholipids and cholesterol the major phospholipids are phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS) along with sphingomyelin (Sph). [Pg.615]

FIGURE 12.4 (A) Diagrammatic representation of the separation of major simple lipid classes on silica gel TLC — solvent system hexane diethylether formic acid (80 20 2) (CE = cholesteryl esters, WE = wax esters, HC = hydrocarbon, EEA = free fatty acids, TG = triacylglycerol, CHO = cholesterol, DG = diacylglycerol, PL = phospholipids and other complex lipids). (B) Diagrammatic representation of the separation of major phospholipids on silica gel TLC — solvent sytem chloroform methanol water (70 30 3) (PA = phosphatidic acid, PE = phosphatidylethanolamine, PS = phosphatidylserine, PC = phosphatidylcholine, SPM = sphingomyelin, LPC = Lysophosphatidylcholine). [Pg.311]

Materials. Egg phosphatidylcholine (PC), bovine brain phosphatidylserine (PS) were obtained from Avanti Polar Lipids Inc. (Birmingham, AL) and cholesterol was from Sigma (St. Louis, MO). Ganglioside GMj, bovine, was obtained from Calbiochem (San Diego, CA). Diethylenetriamine pentaacetic acid distearylamide complex (DPTA-SA) was synthesized according to ref. 17 and nlIn-DTPA-SA was prepared as described (7). This lipophilic radiolabel is not transferred to the serum components from liposomes (unpublished data), nor is it rapidly metabolized in vivo (7). The synthesis of N-(glutaryl)phosphatidylethanolamine(NGPE) has been described (18). Dipalmitoyl deoxyfluorouridine(dpFUdR) was synthesized as described (24). [Pg.274]

The visual pigment present in rods has been termed rhodopsin and consists of 11-m-retinal, a derivative of vitamin A1( and a lipoprotein called opsin. Recent evidence(43) suggests that in native rhodopsin the retinal chromo-phore is covalently bonded to a phosphatidylethanolamine residue of the lipid portion of opsin. The structure of 1 l-cis-retinal is as follows ... [Pg.587]

The correct ratio of lipid constituents is important to form stable liposomes. For instance, a reliable liposomal composition for encapsulating aqueous substances may contain molar ratios of lecithin cholesterol negatively charged phospholipid (e.g., phosphatidyl glycerol (PG)) of 0.9 1 0.1. A composition that is typical when an activated phosphatidylethanolamine (PE) derivative is included may contain molar ratios of phosphatidylcholine (PC) cholesterol PG derivatized PE of 8 10 1 1. Another typical composition using a maleimide derivative of PE without PG is PC male-imide-PE cholesterol of 85 15 50 (Friede et al., 1993). In general, to maintain membrane stability, the PE derivative should not exceed a concentration ratio of about l-10mol PE per lOOmol of total lipid. [Pg.861]

In the above subsection it was demonstrated that the inclusion of electrostatic interactions into the pressure-area-temperature equation of state provides a better fit to the observed equilibrium behavior than the model with two-dimensional neutral gas. Considering this fact, we would like to devote our attention now to the character of the lipid film under the dynamical, nonequilibrium conditions. In the following we shall describe the dynamical behavior of the phospholipid(l,2-dipalmitoyl-3-sn-phosphatidylethanolamines DPPE) thin films in the course of the compression and expansion cycles at air/water interface. [Pg.240]

Marsh, D. (1991). Analysis of the chainlength dependence of lipid phase transition temperatures main and pretransitions of phosphatidylcholines main and non-lamellar transitions of phosphatidylethanolamines, Biochem. Biophys. Acta-Biomembranes, 1062, 1-6. [Pg.108]

The architecture of the CM bilayer is symmetrical, with an equal distribution of the lipids (exclusively phospholipids, mainly phosphatidylethanolamine, phosphatidylglycerol and cardiolipin) among the inner and the outer leaflet. In principle, this holds true for most bacteria, except for those living at extremely high temperatures. For further information, see also Chapter 1 of this volume. [Pg.274]

Figure 1. Control of mitochondrial biogenesis by the nuclear genome. Most mitochondrial proteins, including cytochrome c, are nuclear gene products which are subsequently imported into mitochondria. Similarly, most enzymes involved in synthesis of mitochondrial phosphoplipids are encoded in the nuclear genome. Being located in the endoplasmatic reticulum, they synthesize phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidylglycerol (PG) and phosphatidylinositol (Ptdins). The phospholipids are transferred to the outer membrane. The imported lipids then move into the inner membrane at contact sites. Mitochondria then diversify phospholipids. They decarboxylate phosphatidylserine to phosphatidylethanolamine (PtdEtN), but the main reaction is the conversion of imported phosphatidylglycerol to cardiolipin (CL). Cardiolipins localize mainly in the outer leaflet of the inner membrane. Figure 1. Control of mitochondrial biogenesis by the nuclear genome. Most mitochondrial proteins, including cytochrome c, are nuclear gene products which are subsequently imported into mitochondria. Similarly, most enzymes involved in synthesis of mitochondrial phosphoplipids are encoded in the nuclear genome. Being located in the endoplasmatic reticulum, they synthesize phosphatidylcholine (PtdCho), phosphatidylserine (PtdSer), phosphatidylglycerol (PG) and phosphatidylinositol (Ptdins). The phospholipids are transferred to the outer membrane. The imported lipids then move into the inner membrane at contact sites. Mitochondria then diversify phospholipids. They decarboxylate phosphatidylserine to phosphatidylethanolamine (PtdEtN), but the main reaction is the conversion of imported phosphatidylglycerol to cardiolipin (CL). Cardiolipins localize mainly in the outer leaflet of the inner membrane.
It can be seen from Figure 1 that the choline-containing phospholipids, phosphatidylcholine and sphingomyelin are localized predominantly in the outer monolayer of the plasma membrane. The aminophospholipids, conprising phosphatidylethanolamine and phosphatidylserine, by contrast, are enriched in the cytoplasmic leaflet of the membrane (Bretcher, 1972b Rothman and Lenard, 1977 Op den Kamp, 1979). The transmembrane distribution of the minor membrane lipid components has been determined by reaction with lipid-specific antibodies (Gascard et al, 1991) and lipid hydrolases (Biitikofer et al, 1990). Such studies have shown that phosphatidic acid, phosphatidylinositol and phosphatidylinositol-4,5-fc -phosphate all resemble phosphatidylethanolamine in that about 80% of the phospholipids are localized in the cytoplasmic leaflet of the membrane. [Pg.40]

Once synthesized several factors influence the particular leaflet of the membrane lipid bilayer where the lipids reside. One is static interactions with intrinsic and extrinsic membrane proteins which, by virtue of their mechanism of biosynthesis, are also asymmetric with respect to the membrane. The interaction of the cytoplasmic protein, spectrin with the erythrocye membrane has been the subject of a number of studies. Coupling of spectrin to the transmembrane proteins, band 3 and glycophorin 3 via ankyrin and protein 4.1, respectively, has been well documented (van Doit et al, 1998). Interaction of spectrin with membrane lipids is still somewhat conjectural but recent studies have characterized such interactions more precisely. O Toole et al. (2000) have used a fluorescine derivative of phosphatidylethanolamine to investigate the binding affinity of specttin to lipid bilayers comprised of phosphatidylcholine or a binary mixture of phosphatidylcholine and phosphatidylserine. They concluded on the basis... [Pg.45]

Mammalian ceU membranes consists of a variety of lipids. The phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are quantitatively the most important lipids in cellular membranes. PC and PE are synthesized via different pathways in mammalian cells. [Pg.208]

Cationic lipids cannot be dissolved in water and form aggregates in aqueous solution, such as bilayers. To prepare a homogeneous reagent, in most cases liposomes were made from cationic lipids in a first step. When it is not possible to form stable lipid bilayers (i.e., liposomes) using a single lipid, then it may be necessary to combine the cationic lipid with one or more so-called helper lipids like cholesterol (Choi) (41) or 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (42). [Pg.255]

Figure 6 Lipofection results (lipofection profiles) of lipoplexes from the R-configu-rated cationic lipids KL-1-1 to KL-1-17 (Table 1) in a mixture with equimolar amounts of l,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (counterion chloride) and the pCMVluc-plasmid. Each bar represents the mean ( S.D.) of three wells of a 96-well microtiter plate. T-axis (left) represents the transfection efficiencies expressed in relative light units (RLU) (lu/pg protein). X-axis (right) represents the viability of the cells compared to nontreated control cells. F-axis represents the different cationic lipid/plasmid DNA-charge ratios from 1 to 15. Figure 6 Lipofection results (lipofection profiles) of lipoplexes from the R-configu-rated cationic lipids KL-1-1 to KL-1-17 (Table 1) in a mixture with equimolar amounts of l,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (counterion chloride) and the pCMVluc-plasmid. Each bar represents the mean ( S.D.) of three wells of a 96-well microtiter plate. T-axis (left) represents the transfection efficiencies expressed in relative light units (RLU) (lu/pg protein). X-axis (right) represents the viability of the cells compared to nontreated control cells. F-axis represents the different cationic lipid/plasmid DNA-charge ratios from 1 to 15.
Lipid transfer peptides and proteins occur in eukaryotic and prokaryotic cells. In vitro they possess the ability to transfer phospholipids between lipid membranes. Plant lipid transfer peptides are unspecific in their substrate selectivity. They bind phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and glycolipids. Some of these peptides have shown antifungal activity in vitro The sequences of lipid transfer proteins and peptides contain 91-95 amino acids, are basic, and have eight cysteine residues forming four disulfide bonds. They do not contain tryptophan residues. About 40% of the sequence adopts a helical structure with helices linked via disulfide bonds. The tertiary structure comprises four a-helices. The three-dimensional structure of a lipid transfer peptide from H. vulgare in complex with palmitate has been solved by NMR. In this structure the fatty acid is caged in a hydrophobic cavity formed by the helices. [Pg.278]

The Guy open conformation model docked structure was minimized in vacuo followed by a 1-ns molecular dynamics simulation of the complex embedded in a phosphatidylethanolamine (POPE) lipid bilayer. Adjustments were made to the model, and simulations were repeated so that very little movement occurred during the hnal iterations. Similar methods were used to dock the two domains in transitional and resting states. However, these results are more tenuous as little experimental data is available. In particular, the position of the S4-S5 linker and its role in opening and closing the pore are uncertain. The supplemental movie accompanying reference 36 illustrates the open-to-close-to-open cycle resulting from the simulations. [Pg.228]

Our first issue with respect to the lipid bilayer is its composition. This varies from membrane to membrane but generally includes several glycerophospholipids— phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine—as well as... [Pg.258]

The illustration shows a model of a small section of a membrane. The phospholipids are the most important group of membrane lipids. They include phosphatidylcholine (lecithin), phosphatidylethanolamine, phos-phatidylserine, phosphatidylinositol, and sphingomyelin (for their structures, see p. 50). in addition, membranes in animal cells also contain cholesterol (with the exception of inner mitochondrial membranes). Clycoli-pids (a ganglioside is shown here) are mainly found on the outside of the plasma membrane. Together with the glycoproteins, they form the exterior coating of the cell (the gly-cocalyx). [Pg.214]


See other pages where Lipid phosphatidylethanolamine is mentioned: [Pg.371]    [Pg.374]    [Pg.277]    [Pg.371]    [Pg.374]    [Pg.277]    [Pg.266]    [Pg.825]    [Pg.1158]    [Pg.197]    [Pg.359]    [Pg.309]    [Pg.44]    [Pg.169]    [Pg.203]    [Pg.310]    [Pg.312]    [Pg.313]    [Pg.314]    [Pg.31]    [Pg.48]    [Pg.777]    [Pg.35]    [Pg.43]    [Pg.49]    [Pg.119]    [Pg.365]    [Pg.8]    [Pg.44]    [Pg.96]    [Pg.13]    [Pg.286]    [Pg.220]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Carbodiimide Coupling to Phosphatidylethanolamine Lipid Derivatives

DMS Cross-linking to Phosphatidylethanolamine Lipid Derivatives

Glutaraldehyde Coupling to Phosphatidylethanolamine Lipid Derivatives

Phosphatidylethanolamine

Polar lipids phosphatidylethanolamine

SMPB-Modified Phosphatidylethanolamine Lipid Derivatives

SPDP-Modified Phosphatidylethanolamine Lipid Derivatives

© 2024 chempedia.info