Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lipid oxidation radicals

LH, polyunsaturated fatty acid Peroxyl radical formation Pero) l radical formation Lipid oxidation/radical propagation... [Pg.284]

Metals of transient valency, particularly copper and iron, catalyse the lipid oxidation because they decompose lipid hydroperoxides with formation of free radicals [15.8] and [15.9] ... [Pg.299]

Fig. 16.1 Progression of oxidation in a food system from formation of radicals through primary and secondary lipid oxidation products to protein damage. Fig. 16.1 Progression of oxidation in a food system from formation of radicals through primary and secondary lipid oxidation products to protein damage.
Lipid hydroperoxides are either formed in an autocatalytic process initiated by hydroxyl radicals or they are formed photochemically. Lipid hydroperoxides, known as the primary lipid oxidation products, are tasteless and odourless, but may be cleaved into the so-called secondary lipid oxidation products by heat or by metal ion catalysis. This transformation of hydroperoxides to secondary lipid oxidation products can thus be seen during chill storage of pork (Nielsen et al, 1997). The secondary lipid oxidation products, like hexanal from linoleic acid, are volatile and provide precooked meats, dried milk products and used frying oil with characteristic off-flavours (Shahidi and Pegg, 1994). They may further react with proteins forming fluorescent protein derivatives derived from initially formed Schiff bases (Tappel, 1956). [Pg.316]

A number of methods are available for following the oxidative behaviour of food samples. The consumption of oxygen and the ESR detection of radicals, either directly or indirectly by spin trapping, can be used to follow the initial steps during oxidation (Andersen and Skibsted, 2002). The formation of primary oxidation products, such as hydroperoxides and conjugated dienes, and secondary oxidation products (carbohydrides, carbonyl compounds and acids) in the case of lipid oxidation, can be quantified by several standard chemical and physical analytical methods (Armstrong, 1998 Horwitz, 2000). [Pg.331]

SCHWARZ K, BERTELSEN L H, NISSEN L R, GORDNER P T, HEINONEN M I, HOPIA A, HUYNH-BA T, LOMBELET p, MCPHAIL D, SKIBSTED L H and TIJBURG L (2001) Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant components, Eur Food Res Technol, 212, 319-28. [Pg.345]

A synthesis of these results has been presented, and evidence presented for the role of alkoxy radicals generated during lipid oxidation (Bogan and Lamar 1995 Tatarko and Bumpus 1993). [Pg.415]

The reactions described so far do not require the involvement of the apo-B protein, neither would they necessarily result in a significant amount of protein modification. However, the peroxyl radical can attack the fatty acid to which it is attached to cause scission of the chain with the concomitant formation of aldehydes such as malondialdehyde and 4-hydroxynonenal (Esterbauer et al., 1991). Indeed, complex mixtures of aldehydes have been detected during the oxidation of LDL and it is clear that they are capable of reacting with lysine residues on the surface of the apo-B molecule to convert the molecule to a ligand for the scavenger receptor (Haberland etal., 1984 Steinbrecher et al., 1989). In addition, the lipid-derived radical may react directly with the protein to cause fragmentation and modification of amino acids. [Pg.30]

Addis, P.B. and Warner, G.J. (1991). The potential health aspects of lipid oxidation products in food. In Free Radicals and Food Additives (eds. O.I. Aruoma and B. Halliwell) pp. 77-119. Taylor and Francis, London. [Pg.210]

Mooradian (1993) has studied the antioxidant properties of 14 steroids in a non-membranous system in which the fluorescence of the protein phycoerythrin was measured in the presence of a lipid peroxyl radical generator (ABAP). Oxidation of the protein produces a fluorescent species. Quenching of fluorescence by a test compound indicates antioxidant activity. Oestrone, testosterone, progesterone, androstenedione, dehydroepian-drosterone, cortisol, tetrahydrocortisone, deoxycorti-... [Pg.269]

Sakanaka S and Ishihara Y. 2008. Comparison of antioxidant properties of persimmon vinegar and some other commercial vinegars in radical-scavenging assays and on lipid oxidation in tuna homogenates. Food Chem 107(2) 739-744. [Pg.303]

Sanchez-Moreno C, Larrauri JA and Saura-Calixto F. 1999b. Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int 32(6) 407—412. [Pg.304]

As the superoxide radical is a precursor of the other reactive oxygen species and interacts with blood plasma components under physiological and pathological conditions as well, systems related to its generation are biologically relevant. It should be noted, however, that with respect to the initiation of lipid peroxidation as one of the main causes of oxidative cell damage, its own reactivity is very weak and that only in protonized form is its toxicity comparable to that of lipid peroxyl radicals [18]. [Pg.501]

On the other hand, microsomes may also directly oxidize or reduce various substrates. As already mentioned, microsomal oxidation of carbon tetrachloride results in the formation of trichloromethyl free radical and the initiation of lipid peroxidation. The effect of carbon tetrachloride on microsomes has been widely studied in connection with its cytotoxic activity in humans and animals. It has been shown that CCI4 is reduced by cytochrome P-450. For example, by the use of spin-trapping technique, Albani et al. [38] demonstrated the formation of the CCI3 radical in rat liver microsomal fractions and in vivo in rats. McCay et al. [39] found that carbon tetrachloride metabolism to CC13 by rat liver accompanied by the formation of lipid dienyl and lipid peroxydienyl radicals. The incubation of carbon tetrachloride with liver cells resulted in the formation of the C02 free radical (identified as the PBN-CO2 radical spin adduct) in addition to trichoromethyl radical [40]. It was found that glutathione rather than dioxygen is needed for the formation of this additional free radical. The formation of trichloromethyl radical caused the inactivation of hepatic microsomal calcium pump [41]. [Pg.768]

As mentioned earlier, when NO concentration exceeds that of superoxide, nitric oxide mostly exhibits an inhibitory effect on lipid peroxidation, reacting with lipid peroxyl radicals. These reactions are now well studied [42-44]. The simplest suggestion could be the participation of NO in termination reaction with peroxyl radicals. However, it was found that NO reacts with at least two radicals during inhibition of lipid peroxidation [50]. On these grounds it was proposed that LOONO, a product of the NO recombination with peroxyl radical LOO is rapidly decomposed to LO and N02 and the second NO reacts with LO to form nitroso ester of fatty acid (Reaction (7), Figure 25.1). Alkoxyl radical LO may be transformed into a nitro epoxy compound after rearrangement (Reaction (8)). In addition, LOONO may be hydrolyzed to form fatty acid hydroperoxide (Reaction (6)). Various nitrated lipids can also be formed in the reactions of peroxynitrite and other NO metabolites. [Pg.777]

Belkner et al. [32] demonstrated that 15-LOX oxidized preferably LDL cholesterol esters. Even in the presence of free linoleic acid, cholesteryl linoleate continued to be a major LOX substrate. It was also found that the depletion of LDL from a-tocopherol has not prevented the LDL oxidation. This is of a special interest in connection with the role of a-tocopherol in LDL oxidation. As the majority of cholesteryl esters is normally buried in the core of a lipoprotein particle and cannot be directly oxidized by LOX, it has been suggested that LDL oxidation might be initiated by a-tocopheryl radical formed during the oxidation of a-tocopherol [33,34]. Correspondingly, it was concluded that the oxidation of LDL by soybean and recombinant human 15-LOXs may occur by two pathways (a) LDL-free fatty acids are oxidized enzymatically with the formation of a-tocopheryl radical, and (b) the a-tocopheryl-mediated oxidation of cholesteryl esters occurs via a nonenzymatic way. Pro and con proofs related to the prooxidant role of a-tocopherol were considered in Chapter 25 in connection with the study of nonenzymatic lipid oxidation and in Chapter 29 dedicated to antioxidants. It should be stressed that comparison of the possible effects of a-tocopherol and nitric oxide on LDL oxidation does not support importance of a-tocopherol prooxidant activity. It should be mentioned that the above data describing the activity of cholesteryl esters in LDL oxidation are in contradiction with some earlier results. Thus in 1988, Sparrow et al. [35] suggested that the 15-LOX-catalyzed oxidation of LDL is accelerated in the presence of phospholipase A2, i.e., the hydrolysis of cholesterol esters is an important step in LDL oxidation. [Pg.810]

FIGURE 32-6 Lipid peroxidation leads to fragmentation or oxidation of polyunsaturated fatty acids (PUFA). HO, hydroxyl radical LO, lipid alkoxylradical LOO, lipid peroxyl radical 0 2, superoxide radical O, atomic oxygen radical. (From Hall in [3].)... [Pg.568]

FIGURE 32-7 Sources of free radical formation which may contribute to injury during ischemia-reperfusion. Nitric oxide synthase, the mitochondrial electron-transport chain and metabolism of arachidonic acid are among the likely contributors. CaM, calcium/calmodulin FAD, flavin adenine dinucleotide FMN, flavin mononucleotide HtT, tetrahydrobiopterin HETES, hydroxyeicosatetraenoic acids L, lipid alkoxyl radical LOO, lipid peroxyl radical NO, nitric oxide 0 "2, superoxide radical. [Pg.569]

Abbreviations BSO, D.L-buthionine-. i -sulfoxime L , lipid alkyl radicals LH, lipid LO, Upid alkoxyl radicals LOO, Upid peroxyl radicals L-NAME, yV -nitro-L-arginine-methyl ester MBl, methylene bridge index (mean number of h -aUytic methylene positions per fatty add) NO, nitric oxide NOS, nitric oxide synthase NO, nitrite N02, nitrogen dioxide NO2CI, nitryl chloride O2 , superoxide OH, hydroxyl radical OL, epoxyaUyhc radical OLOO, epoxyperoxyl radical 0=NOO , peroxynitrite SNAP, S-nitroso-iV-acetyl-D.L-penicillamine SOD, superoxide dismutase contd. onp. 98, Subcellular Biochemistry, Volume 36 Phospholipid Metabolism in Apoptosis. [Pg.97]


See other pages where Lipid oxidation radicals is mentioned: [Pg.300]    [Pg.306]    [Pg.307]    [Pg.316]    [Pg.317]    [Pg.321]    [Pg.332]    [Pg.334]    [Pg.344]    [Pg.42]    [Pg.216]    [Pg.23]    [Pg.28]    [Pg.40]    [Pg.43]    [Pg.47]    [Pg.131]    [Pg.223]    [Pg.224]    [Pg.224]    [Pg.263]    [Pg.218]    [Pg.25]    [Pg.21]    [Pg.22]    [Pg.782]    [Pg.788]    [Pg.1163]    [Pg.308]    [Pg.51]    [Pg.52]    [Pg.99]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Alkoxyl radical, lipid oxidation

Free radical lipid oxidation initiation

Lipid oxidation free radical mediated

Lipid peroxidation radical-induced oxidation

Lipid radical

Oxidation radical

Oxide Radicals

Oxidized lipids

© 2024 chempedia.info