Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acylation lipases

A number of steroids have been regioselectively acylated in a similar manner (99,104). Chromobacterium viscosum lipase esterifies 5a-androstane-3p,17p-diol [571-20-0] (75) with 2,2,2-trifluoroethyl butyrate in acetone with high selectivity. The lipase acylates exclusively the hydroxy group in the 3-position giving the 3p-(monobutyryl ester) of (75) in 83% yield. In contrast, bacillus subtilis protease (subtilisin) displays a marked preference for the C-17 hydroxyl. Candida cylindracea lipase (CCL) suspended in anhydrous benzene regioselectively acylates the 3a-hydroxyl group of several bile acid derivatives (104). [Pg.342]

Pseudomonas sp. lipase acyl donor organic solvent sV—R or rV-R... [Pg.332]

There are now hundreds of examples, both in the academic and also patent literature, of the use of lipases and esterases for the KR of racemic alcohols. A typical example (Scheme 4.6) is the lipase from Candida antarcHca lipase B (CALB - also known as Novozyme 435), used to resolve an intermediate in the synthesis of (R)-methadone [10]. Thus, the racemic substrate l-dimethylamino-propan-2-ol was treated with CALB in the presence of vinyl propionate that served not only as the acyl donor but also as the solvent. Both CALB and vinyl propionate were selected from an initial screen of different lipase/acyl donor combinations, and this pairing was found to be optimal in terms of reaction rate and enantioselectivity. The preparative scale reaction was ultimately run at 50% w/w concentration on a 1 kg scale to provide the (R)-ester in 45% yield and with an enantiomeric excess of 95%. [Pg.129]

Finally, it is worthy mentioning other families of diols that are less known but have also been selectively desymmetrized using lipase acylation protocols. Hammel and Deska reported the acetylation of prochiral tetrasubstituted allenic diols, )deld-ing highly enantioenriched axially chiral allenyl monoesters (68-99% ee) with good yields (59-90%), after their reaction with five equivalents of vinyl butanoate in 1,4-diox-ane at 40 °C using PPL as biocatalyst [158]. Other prochiral diols bearing a heteroatom such as boron [159] or sulfur [160], have also been studied, leading usually to modest yields or selectivities. [Pg.243]

Acetylsucrose [63648-81-7] has been prepared in 40% yield by direct acetylation of sucrose using acetic anhydride in pyridine at 40° C (36). The 6-ester has subsequently been obtained in greater than 90% yield, by way of 4,6-cycHc orthoacetate. Other selective methods for the 6-acylated derivatives include the use of alkyl tin reagents such as dibutyl tin oxide (37) and of dibutyl stannolane derivatives (38). Selective acetylation of sucrose by an enzymic process has also been described. Treatment of sucrose with isopropenyl acetate in pyridine in the presence of Lipase P Amano gave, after chromatography, 6-0-acetylsucrose (33%) and 4/6-di-O-acetylsucrose (8%). The latter compound has been obtained in 47% yield by the prolonged treatment (39). [Pg.33]

A number of examples of monoacylated diols produced by enzymatic hydrolysis of prochiral carboxylates are presented in Table 3. PLE-catalyzed conversions of acycHc diesters strongly depend on the stmcture of the substituent and are usually poor for alkyl derivatives. Lipases are much less sensitive to the stmcture of the side chain the yields and selectivity of the hydrolysis of both alkyl (26) and aryl (24) derivatives are similar. The enzyme selectivity depends not only on the stmcture of the alcohol, but also on the nature of the acyl moiety (48). [Pg.335]

Both saturated (50) and unsaturated derivatives (51) are easily accepted by lipases and esterases. Lipase P from Amano resolves azide (52) or naphthyl (53) derivatives with good yields and excellent selectivity. PPL-catalyzed resolution of glycidyl esters (54) is of great synthetic utiUty because it provides an alternative to the Sharpless epoxidation route for the synthesis of P-blockers. The optical purity of glycidyl esters strongly depends on the stmcture of the acyl moiety the hydrolysis of propyl and butyl derivatives of epoxy alcohols results ia esters with ee > 95% (30). [Pg.339]

Lipase-catalyzed enantioselective transesterification of 0-substituted-l,2-diols is another practical route for the synthesis of P-blockers. Lipase PS suspended in toluene catalyzes the transesterification of (63) with vinyl acetate to give the (5)-ester in 43% yield and >98% ee (78). The desired product, optically pure (R)-ttitylglycidol, is then easily obtained by treating the ester with alcohoHc alkaU. Moreover, Pseudomonas Hpase catalyzes the acylation of oxazohdinone (64) with acetic anhydride in very good yield and selectivity (74). PPL-catalyzed transesterification of a number of /n j -norbomene derivatives proceeds in about 30% yield and 92% ee (79,80). [Pg.340]

Resolution of Racemic Amines and Amino Acids. Acylases (EC3.5.1.14) are the most commonly used enzymes for the resolution of amino acids. Porcine kidney acylase (PKA) and the fungaly3.spet i//us acylase (AA) are commercially available, inexpensive, and stable. They have broad substrate specificity and hydrolyze a wide spectmm of natural and unnatural A/-acyl amino acids, with exceptionally high enantioselectivity in almost all cases. Moreover, theU enantioselectivity is exceptionally good with most substrates. A general paper on this subject has been pubUshed (106) in which the resolution of over 50 A/-acyl amino acids and analogues is described. Also reported are the stabiUties of the enzymes and the effect of different acyl groups on the rate and selectivity of enzymatic hydrolysis. Some of the substrates that are easily resolved on 10—100 g scale are presented in Figure 4 (106). Lipases are also used for the resolution of A/-acylated amino acids but the rates and optical purities are usually low (107). [Pg.343]

ACOCH2CCI3, pyridine, porcine pancreatic lipase, 85% yield.These studies examined the selective acylation of carbohydrates. Mannose is acy-lated at the 6-position in 85% yield in one example. [Pg.89]

ACOCH2CF3, porcine pancreatic lipase, THE, 60 h, 77% yield. This enzymatic method was used to acetylate selectively the primary hydroxyl group of a variety of carbohydrates. The selective enzymatic acylation of carbohydrates has been partially reviewed. ... [Pg.151]

Lipases as acylation catalysts, mechanism and preparative applications, particularly in heterocyclic chemistry 98AG(E)1608. [Pg.212]

Ester hydrolysis is common in biological chemistry, particularly in the digestion of dietary fats and oils. We ll save a complete discussion of the mechanistic details of fat hydrolysis until Section 29.2 but will note for now that the reaction is catalyzed by various lipase enzymes and involves two sequential nucleophilic acyl substitution reactions. The first is a trcinsesterificatiori reaction in which an alcohol gioup on the lipase adds to an ester linkage in the tat molecule to give a tetrahedral intermediate that expels alcohol and forms an acyl... [Pg.809]

The metabolic breakdown of triacylglycerols begins with their hydrolysis to yield glycerol plus fatty acids. The reaction is catalyzed by a lipase, whose mechanism of action is shown in Figure 29.2. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine residues, which act cooperatively to provide the necessary acid and base catalysis for the individual steps. Hydrolysis is accomplished by two sequential nucleophilic acyl substitution reactions, one that covalently binds an acyl group to the side chain -OH of a serine residue on the enzyme and a second that frees the fatty acid from the enzyme. [Pg.1130]

Figure 29.2 MECHANISM Mechanism of action of lipase. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine, which react cooperatively to carry out two nucleophilic acyl substitution reactions. Individual steps are explained in the text. Figure 29.2 MECHANISM Mechanism of action of lipase. The active site of the enzyme contains a catalytic triad of aspartic acid, histidine, and serine, which react cooperatively to carry out two nucleophilic acyl substitution reactions. Individual steps are explained in the text.
Gene activated Lipoprotein lipase fatty acid transporter protein adipocyte fatty acid binding protein acyl-CoA synthetase malic enzyme GLUT-4 glucose transporter phosphoenolpyruvate carboxykinase... [Pg.121]

Lipases have also been used as initiators for the polymerization of lactones such as /3-bu tyro lac tone, <5-valerolactone, e-caprolactone, and macrolides.341,352-357 In this case, the key step is the reaction of lactone with die serine residue at the catalytically active site to form an acyl-enzyme hydroxy-terminated activated intermediate. This intermediate then reacts with the terminal hydroxyl group of a n-mer chain to produce an (n + i)-mer.325,355,358,359 Enzymatic lactone polymerization follows a conventional Michaelis-Menten enzymatic kinetics353 and presents a controlled character, without termination and chain transfer,355 although more or less controlled factors, such as water content of the enzyme, may affect polymerization rate and the nature of endgroups.360... [Pg.84]

The steps in the subsequent utilization of muscle LCFAs may be summarized as follows. The free fatty acids, liberated from triglycerides by a neutral triglyceride lipase, are activated to form acyl CoAs by the mediation of LCFAcyl-CoA synthetase which is situated on the outer mitochondrial membrane. The next step involves carnitine palmitoyl transferase I (CPT I, see Figure 9) which is also located on the outer mitochondrial membrane and catalyzes the transfer of LCFAcyl residues from CoA to carnitine (y-trimethyl-amino-P-hydroxybutyrate). LCFAcyl... [Pg.303]

A novel approach was developed very recently by Kita et al. [15]. DKR of allylic alcohols was performed by combining a lipase-catalyzed acylation with a racemization through the formation of allyl vanadate intermediates. Excellent yields and enantioselectivities were obtained. An example is shown in Figure 4.4. A limitation with this approach for the substrates shown in Figure 4.4 is that the allylic alcohol must be equally disubstituted in the allylic position (R = R ) since C—C single bond rotation is required in the tertiary alkoxy intermediate. Alternatively, R or R can be H if the two allylic alcohols formed by migration of the hydroxyl group are enantiomers (e.g. cyclic allylic acetates). [Pg.93]

Very recently the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction has been exploited for the racemization of alcohols using inexpensive aluminum-based catalysts. Combination of these complexes with a lipase (CALB) results in an efficient DKR of sec-alcohols at ambient temperature. To increase the reactivity of the aluminum complexes, a bidentate ligand, such as binol, is required. Also, specific acyl donors need to be used for each substrate [31] (Eigure 4.9). [Pg.96]

Ogasawara ef al. took advantage of the easy racemization of acyloins in the presence of a weak base for the DKR of ewdo-3-hydroxytricyco[4.2.1.0 ]non-7-en-4-one (Figure 4.18) [43]. Acylation of the hydroxyl group was catalyzed by a lipase, and racemization took place via a transient meso-enediol. [Pg.101]

Several reports on DKR of cyanohydrins have been developed using this methodology The unstable nature of cyanohydrins allows continuous racemization through reversible elimination/addition of HCN under basic conditions. The lipase-catalyzed KR in the presence of an acyl donor yields cyanohydrin acetates, which are not racemized under the reaction conditions. [Pg.103]

In 1992, Oda et al. reported a one-pot synthesis of optically active cyanohydrin acetates from aldehydes, which were converted to the corresponding racemic cyanohydrins through transhydrocyanation with acetone cyanohydrin, catalyzed by a a strongly basic anion-exchange resin [46]. The racemic cyanohydrins were acetylated by a lipase from P. cepacia (Amano) with isopropenyl acetate as the acyl donor. The reversible nature of the base-catalyzed transhydrocyanation enabled continuous racemization of the unreacted cyanohydrins, thereby effecting a total conversion (Figure 4.21). [Pg.103]

Faber and coworkers have reported a DKR of mandelic acid by using a lipase-catalyzed O-acylation followed by a racemization catalyzed by mandelate racemase. However, these two transformations do not take place simultaneously in the same pot. When the sequence was repeated four times, (S)-O-acetylmandelic acid was obtained in 80% isolated yield and >98% ee [57]. [Pg.107]

Using this approach, racemates of (27) were enantiomerically enriched using a lipase in organic solvent, followed by racemization of the unreacted enantiomer in buffer. Acylated derivatives (S)-(28) were obtained in yields >50% and >99% ee. Lipases with the opposite enantioselectivity produced (R)-28 in >99% ee. Subsequent chemical deacylation of (28) yielded enantiomerically enriched (27). [Pg.125]

Esterases, proteases, and some lipases are used in stereoselective hydrolysis of esters bearing a chiral or a prochiral acyl moiety. The substrates are racemic esters and prochiral or meso-diesters. Pig liver esterase (PLE) is the most useful enzyme for this type of reaction, especially for the desymmetrization of prochiral or meso substrates. [Pg.137]


See other pages where Acylation lipases is mentioned: [Pg.137]    [Pg.439]    [Pg.197]    [Pg.97]    [Pg.77]    [Pg.474]    [Pg.486]    [Pg.331]    [Pg.333]    [Pg.137]    [Pg.439]    [Pg.197]    [Pg.97]    [Pg.77]    [Pg.474]    [Pg.486]    [Pg.331]    [Pg.333]    [Pg.336]    [Pg.343]    [Pg.821]    [Pg.330]    [Pg.160]    [Pg.495]    [Pg.84]    [Pg.93]    [Pg.109]   
See also in sourсe #XX -- [ Pg.93 , Pg.181 ]

See also in sourсe #XX -- [ Pg.138 ]




SEARCH



Acylated sugars, lipase-catalyzed

Acylation, lipase-catalyzed

Candida antarctica lipase regioselective acylation

Chiral acyl donors lipase-catalyzed resolution

Enantioselective acylation, lipase catalysis

Enzymatic reactions lipase-catalyzed enantioselective acylation

Esterification, lipase-catalyzed enantioselective acylation

Lipase (Triacylglycerol Acyl Hydrolase

Lipase chiral acyl donors

Lipases activated acyl donors

Lipases amine acylation

Lipases and Acyl Transferases

Lipases catalysed hydrolysis/acylation

Pseudomonas cepacia lipase enantioselective acylation using

Sucrose lipase-catalyzed acylation

© 2024 chempedia.info