Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscoelasticity, linear mechanical models

Non-linear viscoelastic mechanical behaviour of a crosslinked sealant was interpreted as due to a Mullins effect. The Mullins effect was observed for a series of sealants under tensile and compression tests. The Mullins effect was partially removed after a mechanical test, when a long relaxation time was allowed, that is the modulus increased over time. Non-linear stress relaxation was observed for pre-strained filler sealants. Time-strain superposition was used to derive a model for the filled sealants. Relaxation over long periods demonstrates that the Mullins effect is caused by non-equilibrium with experimental conditions being faster than return to the initial state. If experiments were conducted over times of the order of a day there may be no Mullins effect. If a filled elastomer were only required to perform its function once per day then each response might be linear viscoelastic. [Pg.618]

The Maxwell model is also called Maxwell fluid model. Briefly it is a mechanical model for simple linear viscoelastic behavior that consists of a spring of Young s modulus (E) in series with a dashpot of coefficient of viscosity (ji). It is an isostress model (with stress 5), the strain (f) being the sum of the individual strains in the spring and dashpot. This leads to a differential representation of linear viscoelasticity as d /dt = (l/E)d5/dt + (5/Jl)-This model is useful for the representation of stress relaxation and creep with Newtonian flow analysis. [Pg.66]

The basic viscoelastic theory assumes a timewise linear relationship between stress and strain. Based on this assumption and using mechanical models thought to represent the behavior of a plastic material, it can be shown that the stress, at any time t, in a plastic held at a constant strain (relaxation test), is given by ... [Pg.113]

Quantitative evidence regarding chain entanglements comes from three principal sources, each solidly based in continuum mechanics linear viscoelastic properties, the non-linear properties associated with steady shearing flows, and the equilibrium moduli of crosslinked networks. Data on the effects of molecular structure are most extensive in the case of linear viscoelasticity. The phenomena attributed to chain entanglement are very prominent here, and the linear viscoelastic properties lend themselves most readily to molecular modeling since the configuration of the system is displaced for equilibrium only slightly by the measurement. [Pg.5]

Real (viscoelastic) materials give an intermediate response that is an exponential curve. The exponential time constants associated with the curve are used to approximate the relaxation times of the material itself. Thus, the shape of the output curve is analyzed to give viscoelastic information, although this model fitting is only strictly legitimate in the linear viscoelastic region. Workers have shown that the mechanical parts of the models (springs and dashpots) can be associated with specific parts of a food s makeup. [Pg.1223]

Limitations to the effectiveness of mechanical models occur because actual polymers are characterized by many relaxation times instead of single values and because use of the models mentioned assumes linear viscoelastic behavior which is observed only at small levels of stress and strain. The linear elements are nevertheless useful in constructing appropriate mathematical expressions for viscoelastic behavior and for understanding such phenomena. [Pg.414]

The measurable linear viscoelastic functions are defined either in the time domain or in the frequency domain. The interrelations between functions in the firequenpy domain are pxirely algebraic. The interrelations between functions in the time domain are convolution integrals. The interrelations between functions in the time and frequency domain are Carson-Laplace or inverse Carson-Laplace transforms. Some of these interrelations will be given below, and a general scheme of these interrelations may be found in [1]. These interrelations derive directly from the mathematical theory of linear viscoelasticity and do not imply any molecular or continuum mechanics modelling. [Pg.96]

Though a simple Maxwell model in the form of equations (1) and (2) is powerful to describe the linear viscoelastic behaviour of polymer melts, it can do nothing more than what it is made for, that is to describe mechanical deformations involving only infinitesimal deformations or small perturbations of molecules towards their equilibrium state. But, as soon as finite deformations are concerned, which are typically those encountered in processing operations on pol rmers, these equations fail. For example, the steady state shear and elongational viscosities remain constant throughout the entire rate of strain range, normal stresses are not predicted. [Pg.146]

Polymeric fluids are the most studied of all complex fluids. Their rich rheological behavior is deservedly the topic of numerous books and is much too vast a subject to be covered in detail here. We must therefore limit ourselves to an overview. The interested reader can obtain more thorough presentations in the following references a book by Ferry (1980), which concentrates on the linear viscoelasticity of polymeric fluids, a pair of books by Bird et al. (1987a,b), which cover polymer constitutive equations, molecular models, and elementary fluid mechanics, books by Tanner (1985), by Dealy and Wissbrun (1990), and by Baird and Dimitris (1995), which emphasize kinematics and polymer processing flows, a book by Macosko (1994) focusing on measurement methods and a book by Larson (1988) on polymer constitutive equations. Parts of this present chapter are condensed versions of material from Larson (1988). The static properties of flexible polymer molecules are discussed in Section 2.2.3 their chemistry is described in Flory (1953). [Pg.107]

Figure 3.10 Predictions of the temporary network model [Eq. (3-24)] (lines) compared to experimental data (symbols) for start-up of uniaxial extension of Melt 1, a long-chain branched polyethylene, using a relaxation spectrum fit to linear viscoelastic data for this melt. (From Bird et al. Dynamics of Polymeric Liquids. Vol. 1 Fluid Mechanics, Copyright 1987. Reprinted by permission of John Wiley Sons, Inc.)... Figure 3.10 Predictions of the temporary network model [Eq. (3-24)] (lines) compared to experimental data (symbols) for start-up of uniaxial extension of Melt 1, a long-chain branched polyethylene, using a relaxation spectrum fit to linear viscoelastic data for this melt. (From Bird et al. Dynamics of Polymeric Liquids. Vol. 1 Fluid Mechanics, Copyright 1987. Reprinted by permission of John Wiley Sons, Inc.)...
The correlation between rheology and thermodynamics is likely to prove a fruitful area for investigation in the future. Very little is as yet known about the detailed mechanisms of non-linear viscoelastic flows, such as those involved in large-amplitude oscillatory shear. Mesoscopic modelling will no doubt throw light on the role of defects in such flows. This is likely to involve both analytical models, and mesoscopic simulation techniques such as Lattice... [Pg.194]

In order to derive some simple linear viscoelastic models, it is necessary to introduce the mechanical equivalents for a Newtonian and a Hookean body. [Pg.3134]

Because of the interaction of the two complicated and not well-understood fields, turbulent flow and non-Newtonian fluids, understanding of DR mechanism(s) is still quite limited. Cates and coworkers (for example, Refs. " ) and a number of other investigators have done theoretical studies of the dynamics of self-assemblies of worm-like micelles. Because these so-called living polymers are subject to reversible scission and recombination, their relaxation behavior differs from reptating polymer chains. An additional form of stress relaxation is provided by continuous breaking and repair of the micellar chains. Thus, stress relaxation in micellar networks occurs through a combination of reptation and breaking. For rapid scission kinetics, linear viscoelastic (Maxwell) behavior is predicted and is observed for some surfactant systems at low frequencies. In many cationic surfactant systems, however, the observed behavior in Cole-Cole plots does not fit the Maxwell model. [Pg.779]

IV. MECHANICAL MODELS FOR LINEAR VISCOELASTIC RESPONSE A. MAXWELL MODEL... [Pg.398]

The mechanical properties of the nucleus, the stiffest component of the cell, are important for the overall cellular response. It is, probably, even more significant that forces transmitted from the cell surface and acting on the nucleus can alter gene expression and protein synthesis. Kan et al. (1999a) have modeled the nucleus as a viscous fluid and analyzed the effect of the nucleus on the leukocyte recovery. Guilak et al. [2000] have estimated the linear viscoelastic properties of nuclei of chondrocytes. Caille et al. [2002] used a model of nonlinear elastic material to estimate Young s modulus of endothelial cell nuclei. Recently, Dahl et al. [2004], by using the micropipette technique, have estimated the mechanical properties of the cell s nuclear envelope. [Pg.1050]

The models have been developed mainly for semi-crystalline polymers, which in general show the largest mechanical anisotropy, but some of the discussion is equally relevant to oriented non-crystalline polymers. Although an oriented polymer is strictly a non-linear viscoelastic solid (see Chapters 10 and 11) the present discussion is restricted to theoretical models which represent linear elastic or linear viscoelastic behaviour. [Pg.264]


See other pages where Viscoelasticity, linear mechanical models is mentioned: [Pg.562]    [Pg.562]    [Pg.338]    [Pg.616]    [Pg.622]    [Pg.102]    [Pg.139]    [Pg.244]    [Pg.299]    [Pg.142]    [Pg.53]    [Pg.8]    [Pg.51]    [Pg.116]    [Pg.264]    [Pg.40]    [Pg.196]    [Pg.289]    [Pg.224]    [Pg.67]    [Pg.51]    [Pg.67]    [Pg.11]    [Pg.140]    [Pg.385]    [Pg.354]    [Pg.274]    [Pg.398]    [Pg.26]    [Pg.62]    [Pg.602]   
See also in sourсe #XX -- [ Pg.276 , Pg.277 , Pg.278 , Pg.279 , Pg.280 , Pg.281 , Pg.282 , Pg.283 ]

See also in sourсe #XX -- [ Pg.298 , Pg.299 , Pg.300 , Pg.301 , Pg.302 , Pg.303 , Pg.304 , Pg.305 , Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 ]




SEARCH



Linear viscoelastic models

Linearized model

Mechanical models

Mechanical models for linear viscoelastic

Mechanical models for linear viscoelastic response

Mechanics Model

Mechanics Modeling

Mechanism model

Mechanisms modeling

Model Linearity

Models linear model

Models linearization

Viscoelastic Modeling

Viscoelastic modelling

Viscoelastic models

Viscoelasticity linear viscoelastic model

Viscoelasticity mechanical modeling

Viscoelasticity mechanical models

Viscoelasticity models

© 2024 chempedia.info