Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Level of crystallinity

The significance of these numbers is seen as follows.The average values of A log t are to be added to the log t values at 126 or 130°C to superimpose the latter curves on the one measured at 128°C. Since these values are added to log t values, the effect is equivalent to multiplying the individual t values at 126 and 130°C by the appropriate antilogs to change the time scale in the individual runs to a common time scale. Using the case of 6 = 0.5 as an illustration, we see the following times are required to reach this level of crystallinity ... [Pg.232]

Other crystallization parameters have been determined for some of the polymers. The dependence of the melting temperature on the crystallization temperature for the orthorhombic form of POX (T = 323K) and both monoclinic (T = 348K) and orthorhombic (T = 329K) modifications of PDMOX has been determined (284). The enthalpy of fusion, Aff, for the same polymers has been determined by the polymer diluent method and by calorimetry at different levels of crystallinity (284). for POX was found to be 150.9 J/g (36.1 cal/g) for the dimethyl derivative, it ranged from 85.6 to 107.0 J/g (20.5—25.6 cal/g). Numerous crystal stmcture studies have been made (285—292). Isothermal crystallization rates of POX from the melt have been determined from 19 to —50 C (293,294). Similar studies have been made for PDMOX from 22 to 44°C (295,296). [Pg.368]

Highest thermal performance with PPS compounds requires that parts be molded under conditions leading to a high level of crystallinity. Glass-filled PPS compounds can be molded so that crystalline or amorphous parts are obtained. Mold temperature influences the crystallinity of PPS parts. Mold temperatures below approximately 93°C produce parts with low crystallinity and those above approximately 135°C produce highly crystalline parts. Mold temperatures between 93 and 135°C yield parts with an intermediate level of crystallinity. Part thickness may also influence the level of crystallinity. Thinner parts are more responsive to mold temperature. Thicker parts may have skin-core effects. When thick parts are molded in a cold mold the skin may not develop much crystallinity. The interior of the part, which remains hot for a longer period of time, may develop higher levels of crystallinity. [Pg.447]

Since the polymer is far from completely stereoregular the level of crystallinity is fairly modest, with a typical value of 25%. The crystalline melting point is about 90°C and the is -23°C. Such materials are rheologically similar to LDPE. Bottles and films are transparent. The particular features of the polymer... [Pg.307]

The suppliers of nylon 46 have laid particular emphasis on the fact that this polymer, with its highly symmetrical chain structure, leads to both a high level of crystallinity and a high rate of nucleation. In turn the high nucleation rate leads to a fine crystalline structure which in this case is claimed to lead to a higher impact strength (dry as moulded) than with nylons 6 and 66. [Pg.489]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

Polyester diols are often combined with polyether diols to provide green strength through crystallization or elevated r . Most prevalent and least expensive is hexamethylene diol adipate (HDA) with a Tm of about 60°C. A variety of polyesters are available with various levels of crystallinity — from wax-like to amorphous — and crystallization rate, and with values ranging well below 0°C to above room temperature. Polybutadiene diols are the most expensive and most hydrophobic. They provide low surface tension and thus good wet out of non-polar surfaces. [Pg.733]

These are the primary process interactions that the designer must be aware of in order to determine process interference in product performance and design. Specific materials may introduce other problem areas as, for example, air entrapment, differential expansion, and the problem of a level of crystallinity in a crystalline plastic that exceeds the allowed level for stability of a product. [Pg.281]

Structurally, plastomers straddle the property range between elastomers and plastics. Plastomers inherently contain some level of crystallinity due to the predominant monomer in a crystalline sequence within the polymer chains. The most common type of this residual crystallinity is ethylene (for ethylene-predominant plastomers or E-plastomers) or isotactic propylene in meso (or m) sequences (for propylene-predominant plastomers or P-plastomers). Uninterrupted sequences of these monomers crystallize into periodic strucmres, which form crystalline lamellae. Plastomers contain in addition at least one monomer, which interrupts this sequencing of crystalline mers. This may be a monomer too large to fit into the crystal lattice. An example is the incorporation of 1-octene into a polyethylene chain. The residual hexyl side chain provides a site for the dislocation of the periodic structure required for crystals to be formed. Another example would be the incorporation of a stereo error in the insertion of propylene. Thus, a propylene insertion with an r dyad leads similarly to a dislocation in the periodic structure required for the formation of an iPP crystal. In uniformly back-mixed polymerization processes, with a single discrete polymerization catalyst, the incorporation of these intermptions is statistical and controlled by the kinetics of the polymerization process. These statistics are known as reactivity ratios. [Pg.166]

P-plastomers are semicrystalline, elastomeric copolymers composed predominantly of propylene with limited amounts of ethylene [21]. The concentration of ethylene is typicaUy less than 20 wt%. The placement of the propylene residues is predominantly in a stereoregular isotactic manner. This leads to the crystallinity (which is critical) in the copolymer. The extent of the crystallinity is attenuated by errors in the placement of the propylene and by the incorporation of ethylene. These two strucmral feamres contribute to lower the crystallinity, as measured by the heat of fusion, to less than 40 J g . Copolymers of propylene and ethylene, which have higher levels of crystallinity are... [Pg.184]

The Tg of P-plastomers changes as a function of ethylene content. The Tg decreases with increasing ethylene content, primarily due to an increase in chain flexibility and loss of pendant methyl residues due to incorporation of ethylene units in the backbone. It is well known that PP has a Tg of 0°C, and polyethylene a Tg< —65°C. The addition of ethylene to a propylene polymer would therefore be expected to decrease the Tg, as is observed here. A secondary effect would be the reduction in the level of crystallinity associated with increasing ethylene content, which is expected to reduce the constraints placed upon the amorphous regions in proximity to the crystallites. Thus, an increase in ethylene content will result in a lower T as well as an increase in magnitude and a decrease in breadth of the glass transition. [Pg.185]

Nylons are semicrystalline polymers whose properties are controlled primarily by their amide concentration, molecular orientation, crystallization conditions, and the level of absorbed water. As discussed earlier, the level of crystallinity and hence product stiffness, is maximized by high concentrations of amide groups, high orientation, slow cooling, and the absence of absorbed water. [Pg.366]

A major characteristic of the Phillips process chain polymerisation of ethylene is that it leads to very limited branching. The resulting polymer is thus highly linear and can reach high levels of crystallinity, hence high densities approaching 0.96-0.97. Such a polyethylene is known as HDPE for "High-density polyethylene". [Pg.46]

The nature of the hard domains differs for the various block copolymers. The amorphous polystyrene blocks in the ABA block copolymers are hard because the glass transition temperature (100°C) is considerably above ambient temperature, i.e., the polystyrene blocks are in the glassy state. However, there is some controversy about the nature of the hard domains in the various multiblock copolymers. The polyurethane blocks in the polyester-polyurethane and polyether-polyurethane copolymers have a glass transition temperature above ambient temperature but also derive their hard behavior from hydrogen-bonding and low levels of crystallinity. The aromatic polyester (usually terephthalate) blocks in the polyether-polyester multiblock copolymer appear to derive their hardness entirely from crystallinity. [Pg.31]

LDPE affect the dynamic mechanical, as well as other material properties of these polymers. The similarity of the temperature dependence of E between our toluene cast HB film and the quenched LDPE (both of 40% crystallinity) in Figure 14A as compared to our quenched HB film (% crystallinity 30%) is another indication of the importance of the level of crystallinity on properties. (This topic has already been discussed in some length in the section on stress-strain behavior). [Pg.148]

Lateral growth occurs in real systems but is not accounted for in the model of Flory. What allows its incorporation into these new calculations is the assignation of the chains to their most probable positions the chains continuously seek positions of equilibrium as crystallization proceeds. This means that all amorphous links have the same propensity for crystallization, which therefore tends to eliminate a distinction between lateral and longitudinal crystal growth (keep in mind that different levels of crystallinity favor one growth pattern over the other -low crystallinity favors fibrils, high crystallinity favors lamellae). [Pg.305]

There are several ways to prepare thin films for use as model catalyst supports.30-31 For the purposes of this review, we will point the reader toward other sources that discuss two of these methods direct oxidation of a parent metal and selective oxidation of one component of a binary alloy. 32 34 The remaining method consists of the deposition and oxidation of a metal on a refractory metal substrate. This method has been used extensively in our group323131 11 and by others33-52-68 and will be the focus of the discussion here. The choice of the metal substrate is important, as lattice mismatch between the film and the substrate will determine the level of crystallinity achieved during film growth. [Pg.345]

At this time of writing, isophthalic acid has become the most widely accepted modifier for packaging applications, due to its relatively minor effect on the PET Tg, considerable reduction in crystallization rate but not in ultimate level of crystallinity (at <5mol% modification levels), slight enhancement in oxygen and carbon dioxide barrier properties, and relatively low monomer cost. [Pg.247]

In the above, the variable R is the radius between center to center fiber spacing, while r is the fiber radius. The shear modulus (Gm) can be approximated as Em/3. The matrix modulus is effected by the level of crystallinity and it is important that the samples are fully crystallized to ensure reproducibility. The value of (> for 30wt% glass-fiber-reinforced PET has been calculated as 3.15 x 104. Using the mathematical analysis shown above, the orientation function of the glass fiber... [Pg.551]

The level of short-chain (SCB) and long-chain (LCB) branches control the solid resin density of a PE resin. For example, the level of SCB is controlled by the amount of alpha olefin comonomer incorporated into LLDPE resin as a pendant group. The random positioning of the pendant groups disrupts the crystailization process when the polymer is cooled from the molten state, causing the level of crystallinity to decrease with increasing amounts of alpha olefin comonomer. [Pg.40]


See other pages where Level of crystallinity is mentioned: [Pg.330]    [Pg.406]    [Pg.150]    [Pg.446]    [Pg.288]    [Pg.493]    [Pg.1054]    [Pg.443]    [Pg.68]    [Pg.169]    [Pg.170]    [Pg.186]    [Pg.187]    [Pg.218]    [Pg.218]    [Pg.295]    [Pg.296]    [Pg.299]    [Pg.366]    [Pg.259]    [Pg.618]    [Pg.26]    [Pg.147]    [Pg.78]    [Pg.171]    [Pg.138]    [Pg.222]    [Pg.247]    [Pg.301]    [Pg.348]    [Pg.39]   
See also in sourсe #XX -- [ Pg.223 , Pg.235 , Pg.236 , Pg.249 , Pg.250 , Pg.253 , Pg.275 , Pg.277 , Pg.278 , Pg.281 , Pg.284 , Pg.297 , Pg.304 , Pg.305 , Pg.306 ]




SEARCH



Crystallinity level

© 2024 chempedia.info