Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lead stationary

X-ray tubes are used in a broad variety of technical applications the classical application certainly is the radiographic inspection. For the penetration of high-Z materials, relatively high power is required. This lead to the development of X-ray tubes for laboratory and field use of voltages up to 450 kV and cp power up to 4,5 kW. Because of design, performance and reliability reasons, most of these maximum power stationary anode tubes are today made in metal-ceramic technology. [Pg.535]

This leads to the quasi-stationary rate constant of equation (A3,4,133) if 4k + k +k f, which is... [Pg.789]

Thus, the neglect of the off-diagonal matrix elements allows the change from mixed states of the nuclear subsystem to pure ones. The motion of the nuclei leads only to the deformation of the electronic distribution and not to transitions between different electronic states. In other words, a stationary distribution of electrons is obtained for each instantaneous position of the nuclei, that is, the elechons follow the motion of the nuclei adiabatically. The distribution of the nuclei is described by the wave function x (R i) in the potential V + Cn , known as the proper adiabatic approximation [41]. The off-diagonal operators C n in the matrix C, which lead to transitions between the states v / and t / are called operators of nonadiabaticity and the potential V = (R) due to the mean field of all the electrons of the system is called the adiabatic potential. [Pg.558]

Since nuclei are much heavier than electrons and move slower, the Born-Oppenheimer Approximation suggests that nuclei are stationary and thus that we can solve for the motion of electrons only. This leads to the concept of an electronic Hamiltonian, describing the motion of electrons in the potential of fixed nuclei. [Pg.163]

The superheated steam generated in the superheater section is coHected in a header pipe that leads to the plant s high pressure steam turbine. The steam turbine s rotor consists of consecutive sets of large, curved, steel aHoy disks, each of which anchors a row of precision-cast turbine blades, also caHed buckets, which protmde tangentiaHy from the shaft and impart rotation to the shaft when impacted by jets of high pressure steam. Rows of stationary blades are anchored to the steam turbine s outer sheH and are located between the rows of moving rotor blades. [Pg.7]

The case is the largest portion of the container. The case is divided into compartments which hold the cell elements. The cores normally have a mud-rest area used to collect shed soHds from the battery plates and supply support to the element. Typical materials of constmction for the battery container are polypropylene, polycarbonate, SAN, ABS, and to a much lesser extent, hard mbber. The material used in fabrication depends on the battery s appHcation. Typical material selections include a polypropylene—ethylene copolymer for SLI batteries polystyrene for stationary batteries polycarbonate for large, single ceU standby power batteries and ABS for certain sealed lead—acid batteries. [Pg.578]

A unit is available in which electrostatic precipitation is combined with a dry-air filter of the type shown in Fig. 17-64Z . In another unit an electrostatic field is superimposed on an automatic filter. In this case the ionizer wires are located on the leading face of the unit, and the collecting electrodes consist of alternate stationary and rotating parallel plates. Cleaning in this case is automatic and continuous. [Pg.1616]

Surface Coating of Metal Furniture Stationary Gas Turbines Lime Manufacturing Plants Lead-Acid Battery Manufacturing Plants Metallic Mineral Processing Plants Automobile and Light-Duty Truck Surface Coating Operations... [Pg.2156]

Wear and rubbing between close toleranee rotary and stationary elements in the pump leading to their failure. [Pg.143]

The predominant air pollution problem of the nineteenth century was smoke and ash from fhe burning of coal or oil in the boiler furnaces of stationary power plants, locomotives, and marine vessels, and in home heating fireplaces and furnaces. Great Britain took the lead in addressing this problem, and, in the words of Sir Hugh Beaver (3) ... [Pg.5]

Although, for most moderators, the surface of a stationary phase in LC can be considered stable at moderator concentrations above about 5%v/v, the results from the same experiments as those carried out by Purnell and his group could still be considered invalid and, at best, would not lead to unambiguous conclusions. Katz et al. [9] avoided this problem by examining liquid/liquid distribution systems using water as one phase and a series of immiscible solvent mixtures as the other and by measuring absolute distribution coefficients as opposed to retention volumes. [Pg.109]

The character of AV will determine the type of stationary value at x = Xi. Specifically, the dominant term in the Taylor series for AV must be examined in order to determine whether AV is always positive (a relative minimum), always negative (a relative maximum), sometimes negative and sometimes positive (an inflection point), or always zero (a neutral point). For AV to be positive, the leading term in the Taylor series, Equation (B.4), which is by inspection the largest term because h is a very small number, must be positive, i.e.. [Pg.480]

Tlie function to be optimized, and its derivative(s), are calculated with a finite precision, which depends on the computational implementation. A stationary point can therefore not be located exactly, the gradient can only be reduced to a certain value. Below this value the numerical inaccuracies due to the finite precision will swamp the true functional behaviour. In practice the optimization is considered converged if the gradient is reduced below a suitable cut-off value. It should be noted that this in some cases may lead to problems, as a function with a very flat surface may meet the criteria without containing a stationary point. [Pg.317]


See other pages where Lead stationary is mentioned: [Pg.736]    [Pg.25]    [Pg.1933]    [Pg.2062]    [Pg.359]    [Pg.163]    [Pg.143]    [Pg.555]    [Pg.557]    [Pg.580]    [Pg.582]    [Pg.54]    [Pg.180]    [Pg.194]    [Pg.59]    [Pg.144]    [Pg.512]    [Pg.551]    [Pg.9]    [Pg.1889]    [Pg.162]    [Pg.222]    [Pg.65]    [Pg.419]    [Pg.236]    [Pg.210]    [Pg.159]    [Pg.237]    [Pg.17]    [Pg.393]    [Pg.154]    [Pg.211]    [Pg.249]    [Pg.555]    [Pg.50]    [Pg.37]    [Pg.213]    [Pg.338]   
See also in sourсe #XX -- [ Pg.315 ]




SEARCH



Lead stationary batteries

Lead-acid secondary batteries stationary

Lead-acid stationary batteries construction

Lead-acid stationary batteries energy density

Stationary lead-acid batteries

© 2024 chempedia.info