Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser Ionization Mass Spectrometry, LIMS

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam- [Pg.586]

The LIMS technique is rarely used for quantitative elemental analysis, since other techniques such as EPMA, AES or SIMS are usually more accurate. The limitations of LIMS in this respect can be ascribed to the lack of a generally valid model to describe ion production from solids under very brief laser irradiation. Dynamic range limitations in the LIMS detection systems are also present, and will be discussed below. [Pg.587]

The material evaporated by the laser pulse is representative of the composition of the solid, however the ion signals that are actually measured by the mass spectrometer must be interpreted in the light of different ionization efficiencies. A comprehensive model for ion formation from solids under typical LIMS conditions does not exist, but we are able to estimate that under high laser irradiance conditions ( 10 W/cm ) the detection limits vary from approximately 1 ppm atomic for easily ionized elements (such as the alkalis, in positive-ion spectroscopy, or the halogens, in negative-ion spectroscopy) to 100—200 ppm atomic for elements with poor ion yields (for example, Zn or As). [Pg.587]

The large variability in elemental ion yields which is typical of the single-laser LIMS technique, has motivated the development of alternative techniques, that are collectively labeled post-ablation ionization (PAI) techniques. These variants of LIMS are characterized by the use of a second laser to ionize the neutral species removed (ablated) from the sample surface by the primary (ablating) laser. One PAI technique uses a high-power, frequency-quadrupled Nd-YAG laser (A, = 266 nm) to produce elemental ions from the ablated neutrals, through nonresonant multiphoton ionization (NRMPI). Because of the high photon flux available, 100% ionization efflciency can be achieved for most elements, and this reduces the differences in elemental ion yields that are typical of single-laser LIMS. A typical analytical application is discussed below. [Pg.588]

1 A Q-switched, frequency-quadrupled Nd—YAG laser (X, = 266 nm) and its accompanying optical components produce and focus the laser pulse onto the sample surface. The typical laser spot size in this instrument is approximately 2 pm. A He-Ne pilot laser, coaxial with the UV laser, enables the desired area to be located. A calibrated photodiode for the measurement of laser energy levels is also present [Pg.588]


In Laser Ionization Mass Spectrometry (LIMS, also LAMMA, LAMMS, and LIMA), a vacuum-compatible solid sample is irradiated with short pulses ("10 ns) of ultraviolet laser light. The laser pulse vaporizes a microvolume of material, and a fraction of the vaporized species are ionized and accelerated into a time-of-flight mass spectrometer which measures the signal intensity of the mass-separated ions. The instrument acquires a complete mass spectrum, typically covering the range 0— 250 atomic mass units (amu), with each laser pulse. A survey analysis of the material is performed in this way. The relative intensities of the signals can be converted to concentrations with the use of appropriate standards, and quantitative or semi-quantitative analyses are possible with the use of such standards. [Pg.44]

A somewhat related technique is that of laser ionization mass spectrometry (LIMS), also known as LIMA and LAMMA, where a single pulsed laser beam ablates material and simultaneously causes some ionization, analogous to samples beyond the outer surface and therefore is more of a bulk analysis technique it also has severe quantiBaction problems, often even more extreme than for SIMS. [Pg.561]

A laser pulse can ablate material from the surface of a sample, and create a microplasma which ionizes some of the sample components. The laser pulse accomplishes both vaporization and ionization of the sample [366,534,535]. This method is called laser ionization mass spectrometry (LIMS). [Pg.75]

In contrast, the LA-ICP-MS (in comparison to laser ionization mass spectrometry (LIMS) where the ion source operates under high vacuum conditions) at present, in spite of the disadvantage of a higher polyatomic ion formation rate, uses an argon plasma ionization at normal pressure - a promising inorganic mass spectrometric technique for trace, isotope and surface analysis which will... [Pg.42]

Part of a mass spectrum for the determination of Fe and Cr contamination in boron nitride contaminated with carbon measured by LIMS is shown in Figure 6.9. The analyte ions 53Cr+ and 54Fe+ due to different masses of isobaric atomic and cluster ions are clearly separated from boron and boron carbide cluster ions as demonstrated in Figure 6.9. Cluster ion formation has been studied by laser ionization mass spectrometry (LIMS) on a boron nitride target.10... [Pg.187]

The fifth category of ionization includes the laser ionization mass spectrometry (LIMS) methods. Matrix-assisted laser desorption ionization (MALDI) uses... [Pg.713]

Martin, C.J., Al, T.A. and Cabri, L.J. (1997) Surface analysis of particles in mine tailings by time-of-flight laser-ionization mass spectrometry (TOF-LIMS). Environmental Geology, 32(2), 107-13. [Pg.534]

R. W. Odom and B. Schueler. Laser Microprobe Mass Spectrometry Ion and Neutral Analysis, in Lasers and Mass Spectrometry (D. M. Lubman, ed.) Oxford University Press, Oxford, 1990. Presents a useful discussion of LIMS instrumental issues, including the post-ablation ionization technique. Several anal)n ical applications are presented. [Pg.597]

Whereas in LIMS only one laser with defined wavelength (e.g., Nd YAG - 1064 nm) is used for direct vaporization and ionization of solid samples in laser plasma, in resonance ionization mass spectrometry (RIMS) " one or more lasers are tuned precisely to the wavelength required for the excited states and ionization of evaporated atoms in order to get a highly selective ionization of the analyte. The basic principles of resonant ionization were first described by Hurst and coworkers at Oak Ridge National Laboratory as well as by Letokhov et in Russia. The technology... [Pg.50]

Laser based mass spectrometric methods, such as laser ionization (LIMS) and laser ablation in combination with inductively coupled plasma mass spectrometry (LA-ICP-MS) are powerful analytical techniques for survey analysis of solid substances. To realize the analytical performances methods for the direct trace analysis of synthetic and natural crystals modification of a traditional analytical technique was necessary and suitable standard reference materials (SRM) were required. Recent developments allowed extending the range of analytical applications of LIMS and LA-ICP-MS will be presented and discussed. For example ... [Pg.425]

Jones, R. M. Lamb, J. H. Lim, C. K. Urinary porphyrin profiles by laser desorption ionization time-of-flight mass spectrometry without the use of classical matrices. Rapid Comm. Mass Spectrom. 1995, 9, 921-923. [Pg.179]


See other pages where Laser Ionization Mass Spectrometry, LIMS is mentioned: [Pg.44]    [Pg.527]    [Pg.529]    [Pg.3]    [Pg.46]    [Pg.261]    [Pg.344]    [Pg.517]    [Pg.3]    [Pg.46]    [Pg.261]    [Pg.344]    [Pg.517]    [Pg.435]    [Pg.382]    [Pg.44]    [Pg.527]    [Pg.529]    [Pg.3]    [Pg.46]    [Pg.261]    [Pg.344]    [Pg.517]    [Pg.3]    [Pg.46]    [Pg.261]    [Pg.344]    [Pg.517]    [Pg.435]    [Pg.382]    [Pg.5]    [Pg.155]    [Pg.446]    [Pg.444]    [Pg.155]    [Pg.446]    [Pg.125]    [Pg.323]    [Pg.58]    [Pg.56]    [Pg.50]    [Pg.1597]    [Pg.351]    [Pg.391]    [Pg.391]    [Pg.437]    [Pg.154]   


SEARCH



LIMS

Laser ionization

Laser ionization mass spectrometry

Laser ionizing

Laser mass spectrometry

Laser spectrometry

Mass laser ionization

Mass spectrometry ionization

Mass spectrometry ionized

© 2024 chempedia.info