Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser dynamic surface

Dr. R. F. Aroca, Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Materials Surface Science Group, Faculty of Science, University of Windsor, Windsor, Canada... [Pg.10]

Vibrational interactions between molecules and a solid surface play a substantial role in many processes occurring on the surface. A large number of investigations show that the vibrational energy exchange can determine the direction and the rate of processes such as adsorption, desorption, laser-induced surface transformations, surface diffusion, chemical transformations of adsorbates, etc. [1-5]. The development of new experimental techniques gives an opportunity for detailed study of different surface processes, and in some cases for direct measurement of the molecular dynamics at surfaces for extremely short times. This is a permanent challenge for the development of the theoretical concepts for vibrational interactions on solid surfaces. [Pg.411]

Femtosecond lasers represent the state-of-the-art in laser teclmology. These lasers can have pulse widths of the order of 100 fm s. This is the same time scale as many processes that occur on surfaces, such as desorption or diffusion. Thus, femtosecond lasers can be used to directly measure surface dynamics tlirough teclmiques such as two-photon photoemission [85]. Femtochemistry occurs when the laser imparts energy over an extremely short time period so as to directly induce a surface chemical reaction [86]. [Pg.312]

Many of the fiindamental physical and chemical processes at surfaces and interfaces occur on extremely fast time scales. For example, atomic and molecular motions take place on time scales as short as 100 fs, while surface electronic states may have lifetimes as short as 10 fs. With the dramatic recent advances in laser tecluiology, however, such time scales have become increasingly accessible. Surface nonlinear optics provides an attractive approach to capture such events directly in the time domain. Some examples of application of the method include probing the dynamics of melting on the time scale of phonon vibrations [82], photoisomerization of molecules [88], molecular dynamics of adsorbates [89, 90], interfacial solvent dynamics [91], transient band-flattening in semiconductors [92] and laser-induced desorption [93]. A review article discussing such time-resolved studies in metals can be found in... [Pg.1296]

The dynamics of fast processes such as electron and energy transfers and vibrational and electronic deexcitations can be probed by using short-pulsed lasers. The experimental developments that have made possible the direct probing of molecular dissociation steps and other ultrafast processes in real time (in the femtosecond time range) have, in a few cases, been extended to the study of surface phenomena. For instance, two-photon photoemission has been used to study the dynamics of electrons at interfaces [ ]. Vibrational relaxation times have also been measured for a number of modes such as the 0-Fl stretching m silica and the C-0 stretching in carbon monoxide adsorbed on transition metals [ ]. Pump-probe laser experiments such as these are difficult, but the field is still in its infancy, and much is expected in this direction m the near fiitiire. [Pg.1790]

Tunable visible and ultraviolet lasers were available well before tunable infrared and far-infrared lasers. There are many complexes that contain monomers with visible and near-UV spectra. The earliest experiments to give detailed dynamical infonnation on complexes were in fact those of Smalley et al [22], who observed laser-induced fluorescence (LIF) spectra of He-l2 complexes. They excited the complex in the I2 B <—A band, and were able to produce excited-state complexes containing 5-state I2 in a wide range of vibrational states. From line w idths and dispersed fluorescence spectra, they were able to study the rates and pathways of dissociation. Such work was subsequently extended to many other systems, including the rare gas-Cl2 systems, and has given quite detailed infonnation on potential energy surfaces [231. [Pg.2447]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

The vibrations of molecular bonds provide insight into bonding and stmcture. This information can be obtained by infrared spectroscopy (IRS), laser Raman spectroscopy, or electron energy loss spectroscopy (EELS). IRS and EELS have provided a wealth of data about the stmcture of catalysts and the bonding of adsorbates. IRS has also been used under reaction conditions to follow the dynamics of adsorbed reactants, intermediates, and products. Raman spectroscopy has provided exciting information about the precursors involved in the synthesis of catalysts and the stmcture of adsorbates present on catalyst and electrode surfaces. [Pg.184]

A second problem in these studies concerns cavitation dynamics on the nanometer length scale [86]. If sufficiently energetic, the ultrafast laser excitation of a gold nanoparticle causes strong nonequilibrium heating of the particle lattice and of the water shell close to the particle surface. Above a threshold in the laser power, which defines the onset of homogeneous nucleation, nanoscale water bubbles develop around the particles, expand, and collapse again within the first nanosecond after excitation (Fig. 9). The size of the bubbles may be examined in this way. [Pg.281]

In addition to the surface/interface selectivity, IR-Visible SFG spectroscopy provides a number of attractive features since it is a coherent process (i) Detection efficiency is very high because the angle of emission of SFG light is strictly determined by the momentum conservation of the two incident beams, together with the fact that SFG can be detected by a photomultiplier (PMT) or CCD, which are the most efficient light detectors, because the SFG beam is in the visible region, (ii) The polarization feature that NLO intrinsically provides enables us to obtain information about a conformational and lateral order of adsorbed molecules on a flat surface, which cannot be obtained by traditional vibrational spectroscopy [29-32]. (iii) A pump and SFG probe measurement can be used for an ultra-fast dynamics study with a time-resolution determined by the incident laser pulses [33-37]. (iv) As a photon-in/photon-out method, SFG is applicable to essentially any system as long as one side of the interface is optically transparent. [Pg.73]

Recently, the newly developed time-resolved quasielastic laser scattering (QELS) has been applied to follow the changes in the surface tension of the nonpolarized water nitrobenzene interface upon the injection of cetyltrimethylammonium bromide [34] and sodium dodecyl sulfate [35] around or beyond their critical micelle concentrations. As a matter of fact, the method is based on the determination of the frequency of the thermally excited capillary waves at liquid-liquid interfaces. Since the capillary wave frequency is a function of the surface tension, and the change in the surface tension reflects the ion surface concentration, the QELS method allows us to observe the dynamic changes of the ITIES, such as the formation of monolayers of various surfactants [34]. [Pg.426]

The F + H2 — HF + FI reaction is one of the most studied chemical reactions in science, and interest in this reaction dates back to the discovery of the chemical laser.79 In the early 1970s, a collinear quantum scattering treatment of the reaction predicted the existence of isolated resonances.80 Subsequent theoretical investigations, using various dynamical approximations on several different potential energy surfaces (PESs), essentially all confirmed this prediction. The term resonance in this context refers to a transient metastable species produced as the reaction occurs. Transient intermediates are well known in many kinds of atomic and molecular processes, as well as in nuclear and particle physics.81 What makes reactive resonances unique is that they are not necessarily associated with trapping... [Pg.30]

Reaction dynamics is the part of chemical kinetics which is concerned with the microscopic-molecular dynamic behavior of reacting systems. Molecular reaction dynamics is coming of age and much more refined state-to-state information is becoming available on the fundamental reactions. The contribution of molecular beam experiments and laser techniques to chemical dynamics has become very useful in the study of isolated molecules and their mutual interactions not only in gas surface systems, but also in solute-solution systems. [Pg.262]


See other pages where Laser dynamic surface is mentioned: [Pg.656]    [Pg.915]    [Pg.915]    [Pg.1297]    [Pg.3013]    [Pg.395]    [Pg.61]    [Pg.271]    [Pg.529]    [Pg.176]    [Pg.28]    [Pg.689]    [Pg.780]    [Pg.150]    [Pg.172]    [Pg.195]    [Pg.367]    [Pg.239]    [Pg.84]    [Pg.161]    [Pg.88]    [Pg.93]    [Pg.747]    [Pg.67]    [Pg.196]    [Pg.168]    [Pg.192]    [Pg.100]    [Pg.286]    [Pg.418]    [Pg.412]    [Pg.431]   
See also in sourсe #XX -- [ Pg.580 ]




SEARCH



Surface laser

© 2024 chempedia.info