Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser detectability limits

Analyte SoWeiU Sample Laser Detection limit, wi%... [Pg.748]

Better detection limits are obtained using fluorescence, particularly when using a laser as an excitation source. When using fluorescence detection, a small portion of the capillary s protective coating is removed and the laser beam is focused on the inner portion of the capillary tubing. Emission is measured at an angle of 90° to the laser. Because the laser provides an intense source of radiation that can be focused to a narrow spot, detection limits are as low as 10 M. [Pg.604]

High power pulsed lasers are used to produce plasmas and thus to sample and excite the surfaces of soHds. Improvements in minimum detectable limits and decreases in background radiation and in interelement interference effects result from the use of two lasers (99) (see Surface and interface analysis). [Pg.115]

A new cyanide dye for derivatizing thiols has been reported (65). This thiol label can be used with a visible diode laser and provide a detection limit of 8 X 10 M of the tested thiol. A highly sensitive laser-induced fluorescence detector for analysis of biogenic amines has been developed that employs a He—Cd laser (66). The amines are derivatized by naphthalenedicarboxaldehyde in the presence of cyanide ion to produce a cyanobenz[ isoindole which absorbs radiation at the output of He—Cd laser (441.6 nm). Optimization of the detection system yielded a detection limit of 2 x 10 M. [Pg.245]

Limits of detection become a problem in capillary electrophoresis because the amounts of analyte that can be loaded into a capillary are extremely small. In a 20 p.m capillary, for example, there is 0.03 P-L/cm capillary length. This is 1/100 to 1/1000 of the volume typically loaded onto polyacrylamide or agarose gels. For trace analysis, a very small number of molecules may actually exist in the capillary after loading. To detect these small amounts of components, some on-line detectors have been developed which use conductivity, laser Doppler effects, or narrowly focused lasers (qv) to detect either absorbance or duorescence (47,48). The conductivity detector claims detection limits down to lO molecules. The laser absorbance detector has been used to measure some of the components in a single human cell (see Trace AND RESIDUE ANALYSIS). [Pg.183]

It was found, that at standard gas-chromatograph sampling of 1 pL of analyte solution the limit of detection for different amines was measured as 0.1-3 ng/ml, or of about 1 femtomole of analyte in the probe. This detection limit is better of published data, obtained by conventional GC-MS technique. Evidently, that both the increasing of the laser spot size and the optimization of GC-capillary position can strongly improve the detection limit. [Pg.103]

Laser ionization mass spectrometry or laser microprobing (LIMS) is a microanalyt-ical technique used to rapidly characterize the elemental and, sometimes, molecular composition of materials. It is based on the ability of short high-power laser pulses (-10 ns) to produce ions from solids. The ions formed in these brief pulses are analyzed using a time-of-flight mass spectrometer. The quasi-simultaneous collection of all ion masses allows the survey analysis of unknown materials. The main applications of LIMS are in failure analysis, where chemical differences between a contaminated sample and a control need to be rapidly assessed. The ability to focus the laser beam to a diameter of approximately 1 mm permits the application of this technique to the characterization of small features, for example, in integrated circuits. The LIMS detection limits for many elements are close to 10 at/cm, which makes this technique considerably more sensitive than other survey microan-alytical techniques, such as Auger Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA). Additionally, LIMS can be used to analyze insulating sam-... [Pg.586]

The material evaporated by the laser pulse is representative of the composition of the solid, however the ion signals that are actually measured by the mass spectrometer must be interpreted in the light of different ionization efficiencies. A comprehensive model for ion formation from solids under typical LIMS conditions does not exist, but we are able to estimate that under high laser irradiance conditions (>10 W/cm ) the detection limits vary from approximately 1 ppm atomic for easily ionized elements (such as the alkalis, in positive-ion spectroscopy, or the halogens, in negative-ion spectroscopy) to 100—200 ppm atomic for elements with poor ion yields (for example, Zn or As). [Pg.587]

Approximately 70 different elements are routinely determined using ICP-OES. Detection limits are typically in the sub-part-per-billion (sub-ppb) to 0.1 part-per-million (ppm) range. ICP-OES is most commonly used for bulk analysis of liquid samples or solids dissolved in liquids. Special sample introduction techniques, such as spark discharge or laser ablation, allow the analysis of surfaces or thin films. Each element emits a characteristic spectrum in the ultraviolet and visible region. The light intensity at one of the characteristic wavelengths is proportional to the concentration of that element in the sample. [Pg.633]

Tab. 3.1. NR-laser-SNMS Relative sensitivity factors S (Me, ESi) and detection limits DL for metals on Si wafer surfaces. Tab. 3.1. NR-laser-SNMS Relative sensitivity factors S (Me, ESi) and detection limits DL for metals on Si wafer surfaces.
Table III. Detection Limits of 0PA/2-ME and NDA/CN Derivatized Amino Acids Using Conventional and Laser-Induced Fluorescence (LIF) Detection... Table III. Detection Limits of 0PA/2-ME and NDA/CN Derivatized Amino Acids Using Conventional and Laser-Induced Fluorescence (LIF) Detection...
Liquid chromatography/mass spectrometry Lower limit of detection Limit of detection Limit of quantitation Florseshoe crab hemocyanin Liquid scintillation counting Matrix-assisted laser desorption/ ionization mass spectrometry m -Maleimidobenzoy 1-A -Hydroxysuccinimide 1 -Cyclohexyl-3-(2-Morptiolino-ethyl)carbodiimide rnetlio-/ -Toluenesulfonate (same as CDI)... [Pg.12]

A variety of formats and options for different types of applications are possible in CE, such as micellar electrokinetic chromatography (MEKC), isotachophoresis (ITP), and capillary gel electrophoresis (CGE). The main applications for CE concern biochemical applications, but CE can also be useful in pesticide methods. The main problem with CE for residue analysis of small molecules has been the low sensitivity of detection in the narrow capillary used in the separation. With the development of extended detection pathlengths and special optics, absorbance detection can give reasonably low detection limits in clean samples. However, complex samples can be very difficult to analyze using capillary electrophoresis/ultraviolet detection (CE/UV). CE with laser-induced fluorescence detection can provide an extraordinarily low LOQ, but the analytes must be fluorescent with excitation peaks at common laser wavelengths for this approach to work. Derivatization of the analytes with appropriate fluorescent labels may be possible, as is done in biochemical applications, but pesticide analysis has not been such an important application to utilize such an approach. [Pg.781]

Tran [391,392] has reported ng detection of dyes on filter paper by SERS. Silver colloidal hydrosols stabilised by filter supports enhance the Raman scattering of adsorbed dyes. Typical detection limits are 500 pg (crystal violet), 7 ng (l,l,9-trimethyl-2,2 -cyanine perchlorate), 15 ng (3,3 -diethylthiacarbocyanine chloride) and 240 ng (methyl red) using a 3 mW He-Ne laser. [Pg.220]

The use of near-IR-laser excited FT-SERS eliminates the disturbing fluorescence of impurities found with visible excitation, and provides SERS enhancement factors that are about 20 times larger than those found for excitation at 514.5nm [792]. For a strong Raman scatterer (fluorene), a typical detection limit of 500 ng is found for a 3-mm diameter spot. For weak scatterers, the detection limits may be in the high- xg region, which means that some compromise between chromatographic... [Pg.536]

Detection limits in the lOOfg range can be obtained with a tuneable UV laser working at a wavelength of maximum absorption for the compounds of interest. Continuous supersonic beams require high gas loads and combination with a pulsed ionisation technique (e.g. REMPI) is unfavourable in terms of sensitivity. Pulsed valves are a better approach for a GC-UV-MS interface [1021]. [Pg.562]

SSMS can be classified among the milliprobe techniques (Figure 8.3), i.e. it is a unique link between microprobe techniques and macroanalytical methods that are characterised by poor lateral and in-depth resolutions (as in OES), or that have no lateral resolution whatsoever (as in NAA). Also, the achievable precision and accuracy are poor, because of the irreproducible behaviour of the r.f. spark. Whereas analysis of metals, semiconductors and minerals is relatively simple and the procedures have become standardised, the analysis of nonconducting materials is more complex and generally requires addition of a conducting powder (e.g. graphite) to the sample [359]. Detection limits are affected by the dilution, and trace contamination from the added components is possible. These problems can be overcome by the use of lasers [360]. Coupled with isotope dilution, a precision of 5% can be attained for SSMS. [Pg.651]

Raman spectroscopy has enjoyed a dramatic improvement during the last few years the interference by fluorescence of impurities is virtually eliminated. Up-to-date near-infrared Raman spectrometers now meet most demands for a modern analytical instrument concerning applicability, analytical information and convenience. In spite of its potential abilities, Raman spectroscopy has until recently not been extensively used for real-life polymer/additive-related problem solving, but does hold promise. Resonance Raman spectroscopy exhibits very high selectivity. Further improvements in spectropho-tometric measurement detection limits are also closely related to advances in laser technology. Apart from Raman spectroscopy, areas in which the laser is proving indispensable include molecular and fluorescence spectroscopy. The major use of lasers in analytical atomic... [Pg.734]


See other pages where Laser detectability limits is mentioned: [Pg.741]    [Pg.135]    [Pg.741]    [Pg.135]    [Pg.799]    [Pg.210]    [Pg.314]    [Pg.315]    [Pg.251]    [Pg.71]    [Pg.529]    [Pg.530]    [Pg.531]    [Pg.622]    [Pg.639]    [Pg.643]    [Pg.136]    [Pg.139]    [Pg.234]    [Pg.90]    [Pg.131]    [Pg.233]    [Pg.236]    [Pg.267]    [Pg.292]    [Pg.20]    [Pg.22]    [Pg.60]    [Pg.398]    [Pg.538]    [Pg.540]    [Pg.559]    [Pg.614]    [Pg.577]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Detectable limit

Detection laser

Detection limit, near-infrared diode lasers

Detection limits

Detection limits, limitations

Detection-limiting

Laser ablation-inductively coupled detection limits

Laser detected

Laser limitation

Matrix-assisted laser detection limit

© 2024 chempedia.info