Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactic acid chloride

Racemic 1 and 2a were not resolved into their two enantiomers on a Cylodex B chiral stationary phase GC column (J W Scientific), and so the absolute configurations of insect-produced 1 and 2a were determined by derivatization with a chiral derivatizing reagent followed by GC analysis of the resulting diastereomers on an achiral column. Thus, racemic lavandulol, a sanq)le of (R)-(-)-lavandulol, and a hydrolyzed sample of the insect-produced conq)ound were derivatized with acetyl (5)-lactic acid chloride and pyridine in ether to form the acetyl lactate ester(s) (75). The diastereomeric derivatives from racemic lavandulol were resolved almost to baseline, with the derivative from (7 )-lavandulol (isolated from lavender oil) being the later eluting peak. [Pg.19]

Take two test-tubes A and B in A place about 5 ml. of neutralised tartaric acid solution and in B place 5 ml. of distilled water. To each solution add 3-4 drops of ferric chloride solution. Place a piece of white paper under the tubes, look down their length and note that A is definitely yellow compared with the control tube B. This yellow colour is given by a-hydroxy-carboxylic-acids, lactic acid, tartaric acid, citric acid. [Pg.333]

Uffelmann s reagent (gives a yellow coloration in the presence of lactic acid) add a ferric chloride solution to a 2% phenol solution until the solution becomes violet in color. [Pg.1198]

Substitution at the Alcohol Group. Acylation of the OH group by acylating agents such as acid chlorides or anhydrides is one of the important high yielding substitution reactions at the OH group of lactic acid and its functional derivatives. AUphatic, aromatic, and other substituted derivatives can be produced. [Pg.513]

Polymer Blends. The miscibility of poly(ethylene oxide) with a number of other polymers has been studied, eg, with poly (methyl methacrylate) (18—23), poly(vinyl acetate) (24—27), polyvinylpyrroHdinone (28), nylon (29), poly(vinyl alcohol) (30), phenoxy resins (31), cellulose (32), cellulose ethers (33), poly(vinyl chloride) (34), poly(lactic acid) (35), poly(hydroxybutyrate) (36), poly(acryhc acid) (37), polypropylene (38), and polyethylene (39). [Pg.342]

A Acylsarcosinates. Sodium A/-lautoylsarcosinate [7631-98-3] is a good soap-like surfactant. Table 4 gives trade names and properties. The amido group in the hydrophobe chain lessens the interaction with hardness ions. A/-Acylosarcosinates have been used in dentifrices (qv) where they ate claimed to inactivate enzymes that convert glucose to lactic acid in the mouth (57). They ate prepared from a fatty acid chloride and satcosine ... [Pg.238]

Aininopolycarboxylic acids Barium cyanide P-ainines Cyanuric chloride Diaininoinaleonitrile Lactic acid Methionine Sodium cyanide... [Pg.269]

Lactic acid and levulinic acid are two key intermediates prepared from carbohydrates [7]. Lipinsky [7] compared the properties of the lactide copolymers [130] obtained from lactic acid with those of polystyrene and polyvinyl chloride (see Scheme 4 and Table 5) and showed that the lactide polymer can effectively replace the synthetics if the cost of production of lactic acid is made viable. Poly(lactic acid) and poly(l-lactide) have been shown to be good candidates for biodegradeable biomaterials. Tsuji [131] and Kaspercejk [132] have recently reported studies concerning their microstructure and morphology. [Pg.419]

Resistance to corrosion of electroless nickel, both as-deposited and, in most cases, after heating to 750°C, is listed by Metzger for about 80 chemicals and other products. Resistance was generally satisfactory, with attack at a rate below 13 /im/year. The only substances causing faster attack were acetic acid, ammonium hydroxide or phosphate, aerated ammonium sulphate, benzyl chloride, boric acid, fluorophosphoric acid, hydrochloric acid, aerated lactic acid, aerated lemon juice, sodium cyanide and sulphuric acid. [Pg.537]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

The pectin/sucrose gels were characterized as follows (amounts per lOOg gel) 0.3 g AUA, 65% soluble solid substance, 0.01 mol sodium acetate / lactic acid buffer, pH 3.0 (20°C). The metal ions were added as combinations of chlorides according to a mixture design with constant amount of chloride ions (2.5 mmol / lOOg gel). Thus the total amount of metal ions... [Pg.584]

At this time we do not have a firm nnderstanding of how CrCl2 and VCI3 catalyze the double bond isomerization and why other metal chlorides are less effective. We propose that CrCh" or VCh" anion plays a role in hydride transfer, facilitating donble bond isomerization. CnCh is less effective and both lactic acid and pyruvaldehyde are formed. FeCh" and MnCh" anions are ineffective in the transformation and only pyruvaldehyde is formed. The fact that only a small amount of 1,3-dihydroxyacetone is formed is consistent with the NMR observation that the compounds exist as hemiacetal dimers in ionic hquids and not as monomers. Otherwise 1,3-dihydroxyacetone would be expected as a major product (16). [Pg.417]

This isotonic volume expander contains sodium, potassium, chloride, and lactate that approximates the fluid and electrolyte composition of the blood. Ringer s lactate (also known as lactated Ringer s or LR) provides ECF replacement and is most often used in the perioperative setting, and for patients with lower GI fluid losses, burns, or dehydration. The lactate component of LR works as a buffer to increase the pH. Large volumes of LR may cause metabolic alkalosis. Because patients with significant liver disease are unable to metabolize lactate sufficiently, Ringer s lactate administration in this population may lead to accumulation of lactate with iatrogenic lactic acidosis. The lactate is not metabolized to bicarbonate in the presence of liver disease and lactic acid can result. [Pg.406]

The most widely used and effective disinfectant solutions are based on iodine (iodophor) with concentrations ranging between 0.05% and 0.1%, but sometimes higher concentrations are recommended. Other agents such as chlorhexidine or chlorine dioxide, peroxide, sodium chloride and lactic acid may also be effective (Wilson et al., 1997) but are not common. Recent trials show positive effects of aloe vera-based dipping agents (Leon et al., 2004). One problem of iodine containing products is their low pH value (<4.0), which is necessary for their antimicrobial activity (Hansen and Hamann, 2003). [Pg.210]

First and foremost among the deficiencies of the Monsavon formula was the poor bar lather. It had been observed that a 10% aqueous solution of the Monsavon bar had a pH of 3, whereas a 10% aqueous solution of ordinary soaps has a pH of 10. This acidity resulted from the presence of both lactic acid and residual hydrogen chloride, which was a by-product in the manufacture of SAI. Suspecting a connection with the poor lathering properties of the prototype, the pH of the prototype was raised from 3 to 7 by elimination of lactic acid and the addition of caustic solution, sodium carbonate, or sodium stearate [6,18],... [Pg.281]

The pyridine subcycle unit has been introduced into a wide range of 18-crown-6 derivatives. For example, reaction of 2,6-pyridinedicarbonyl chloride with the dimethyl substituted tetraethylene glycol (SS)-84, derived from (S)-lactic acid, afforded (126) the chiral macrocyclic polyether diester (5S)-184. A similar preparative approach (127) gave (SS)-185, where the source of the chirality is (5)-mandelic acid. [Pg.270]

In addition to the irritant effects, cyanogen chloride may also cause interference with cellular metabolism via the cyanide radical. Cyanide ion exerts an inhibitory action on certain metabolic enzyme systems, most notably cytochrome oxidase, the enzyme involved in the ultimate transfer of electrons to molecular oxygen. Because cytochrome oxidase is present in practically all cells that function under aerobic conditions, and because the cyanide ion diffuses easily to all parts of the body, cyanide quickly halts practically all cellular respiration. The venous blood of a patient dying of cyanide is bright red and resembles arterial blood because the tissues have not been able to utilize the oxygen brought to them. Cyanide intoxication produces lactic acidosis, probably the result of increased rate of glycolysis and production of lactic acid. ... [Pg.193]

Similarly, we can make assignments for poly(lactic acid) except considering that the carbon next to the chloride-containing carbon has a methyl group, the next following methylene is now a carbonyl, and the next following methylene is an oxygen. [Pg.711]

I. 4-methoxyacetophenone (30 //moles) was added as an internal standard. The reaction was stopped after 2 hours by partitioning the mixture between methylene chloride and saturated sodium bicarbonate solution. The aqueous layer was twice extracted with methylene chloride and the extracts combined. The products were analyzed by GC after acetylation with excess 1 1 acetic anhydride/pyridine for 24 hours at room temperature. The oxidations of anisyl alcohol, in the presence of veratryl alcohol or 1,4-dimethoxybenzene, were performed as indicated in Table III and IV in 6 ml of phosphate buffer (pH 3.0). Other conditions were the same as for the oxidation of veratryl alcohol described above. TDCSPPFeCl remaining after the reaction was estimated from its Soret band absorption before and after the reaction. For the decolorization of Poly B-411 (IV) by TDCSPPFeCl and mCPBA, 25 //moles of mCPBA were added to 25 ml 0.05% Poly B-411 containing 0.01 //moles TDCSPPFeCl, 25 //moles of manganese sulfate and 1.5 mmoles of lactic acid buffered at pH 4.5. The decolorization of Poly B-411 was followed by the decrease in absorption at 596 nm. For the electrochemical decolorization of Poly B-411 in the presence of veratryl alcohol, a two-compartment cell was used. A glassy carbon plate was used as the anode, a platinum plate as the auxiliary electrode, and a silver wire as the reference electrode. The potential was controlled at 0.900 V. Poly B-411 (50 ml, 0.005%) in pH 3 buffer was added to the anode compartment and pH 3 buffer was added to the cathode compartment to the same level. The decolorization of Poly B-411 was followed by the change in absorbance at 596 nm and the simultaneous oxidation of veratryl alcohol was followed at 310 nm. The same electrochemical apparatus was used for the decolorization of Poly B-411 adsorbed onto filter paper. Tetrabutylammonium perchlorate (TBAP) was used as supporting electrolyte when methylene chloride was the solvent. [Pg.520]

Urinary excretion of C1 was observed in rats that had been administered Alcide, an antimicrobial compound consisting of sodium chlorite and lactic acid that form chlorine dioxide when mixed (Scatina et al. 1984). The rats had received 10 daily dermal applications, followed by an application of radiolabeled Alcide. Urinary excretion was greatest in the first 24 hours post application the half-time of urinary elimination was 64 hours. The excreted radioactivity consisted of approximately equal portions of chloride ion and chlorite. No radioactivity was detected in feces or expired air. [Pg.67]


See other pages where Lactic acid chloride is mentioned: [Pg.335]    [Pg.335]    [Pg.160]    [Pg.96]    [Pg.460]    [Pg.515]    [Pg.516]    [Pg.149]    [Pg.376]    [Pg.669]    [Pg.41]    [Pg.81]    [Pg.2]    [Pg.411]    [Pg.109]    [Pg.941]    [Pg.273]    [Pg.146]    [Pg.307]    [Pg.432]    [Pg.460]    [Pg.532]    [Pg.193]    [Pg.213]    [Pg.615]    [Pg.63]    [Pg.84]    [Pg.208]   
See also in sourсe #XX -- [ Pg.523 ]




SEARCH



© 2024 chempedia.info