Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic studies structural effects

Discussions and studies of reaction mechanisms attempt to analyse the way in which a compound A is transformed into a compound B. Varying degrees of sophistication are attached to the phrase reaction mechanism but the aim is generally to define the reaction in terms of elementary steps and stereochemistry. In solution chemistry, the structures of compounds A and B will be known and mechanistic information may be deduced from kinetic studies, solvent effects, stereochemistry, isotopic labelling, and other slight structural modifications. [Pg.152]

Structural effects on the rates of deprotonation of ketones have also been studied using veiy strong bases under conditions where complete conversion to the enolate occurs. In solvents such as THF or DME, bases such as lithium di-/-propylamide (LDA) and potassium hexamethyldisilylamide (KHMDS) give solutions of the enolates in relative proportions that reflect the relative rates of removal of the different protons in the carbonyl compound (kinetic control). The least hindered proton is removed most rapidly under these... [Pg.420]

It is important to distinguish clearly between the surface area of a decomposing solid [i.e. aggregate external boundaries of both reactant and product(s)] measured by adsorption methods and the effective area of the active reaction interface which, in most systems, is an internal structure. The area of the contact zone is of fundamental significance in kinetic studies since its determination would allow the Arrhenius pre-exponential term to be expressed in dimensions of area"1 (as in catalysis). This parameter is, however, inaccessible to direct measurement. Estimates from microscopy cannot identify all those regions which participate in reaction or ascertain the effective roughness factor of observed interfaces. Preferential dissolution of either reactant or product in a suitable solvent prior to area measurement may result in sintering [286]. The problems of identify-... [Pg.28]

One facet of kinetic studies which must be considered is the fact that the observed reaction rate coefficients in first- and higher-order reactions are assumed to be related to the electronic structure of the molecule. However, recent work has shown that this assumption can be highly misleading if, in fact, the observed reaction rate is close to the encounter rate, i.e. reaction occurs at almost every collision and is limited only by the speed with which the reacting entities can diffuse through the medium the reaction is then said to be subject to diffusion control (see Volume 2, Chapter 4). It is apparent that substituent effects derived from reaction rates measured under these conditions may or will be meaningless since the rate of substitution is already at or near the maximum possible. [Pg.9]

Substituent effects on the are remarkable. Electron-withdrawing groups at the 5 -position, e.g., 5 -nitro-substitution (indoline component), and donor substituent at the 8-position (benzothiopyran component) in 44 leads to a longer wavelength shift. As the polarity of the solvent increases, the max of the colored form of spiroindolinobenzothiopyran results in hypsochromic shift. This can be interpreted as the existence of a polar structural component of the colored form in the ground state. Kinetic study has suggested that the zwitterionic structure largely contributes to the colored form of 6-nitrospiroindolinobenzothiopyran, as well as spiropy-rans.97 Based on H-NMR and X-ray analysis,98 99 the existence of an... [Pg.40]

The kinetics of the reaction of trialkyl phosphites, dialkyl aryl-phosphonites, alkyl diarylphosphinites, and triarylphosphines with Sg has been studied the effects of structural changes on the rate (Ph2POR > PhP(OR>2 > P(OR)g > Ph P) and on the Hammett p values are interpreted with respect to the mechanism. A general method to displace mercapto groups from carbon with clean inversion includes... [Pg.110]

Violante A, Krishnamurti GSR, Pigna M (2008) Mobility of trace elements in soil environments. In Violante A, Huang PM and Gadd G (eds) Wiley-JUPAC series on biophysico-chemical processes of metals and metalloids in soil environments. John Wiley Sons, Hoboken, USA Waltham AC, Eick MJ (2002) Kinetic of arsenic adsorption on goethite in the presence of sorbed silicic acid. Soil Sci Soc Am J 66 818-825 Waychunas GA, Fuller CC, Rea BA, Davis J (1996) Wide angle X-ray scattering (WAXS) study of two-line ferrihydrite structure Effect of arsenate sorption and counterion variation and comparison with EXAFS results. Geochim Cos-mochim Acta 60 1765-1781... [Pg.68]

The fact that the kinetic chain length of dimedone autoxidation is very low appears to indicate structural effects in autoxidation reactions. These may account for some of the discrepancies found in autoxidation chemiluminescence studies of different types of compounds. [Pg.77]

Kinetic studies of the stoichiometric carbonylation of [Ir(CO)2l3Me] were conducted to model the rate-determining step of the catalytic cycle [73,85]. The reaction can form both fac,cis and mer,trans isomers of [Ir(CO)2l3 (COMe)] (Scheme 13), the product ratio varying with the solvent and temperature used. An X-ray crystal structure was obtained for the fac,cis isomer. Carbonylation of [Ir(CO)2l3Me] is rather slow and requires temperatures > 80 °C in chlorinated solvents (e.g. PhCl). However, the presence of protic solvents (e.g. methanol) has a dramatic accelerating effect. This is interpreted in terms of the protic solvent aiding iodide dissociation by solvation. [Pg.206]

The basic study was performed on copper complexes with N,N,N, N1-tetramethylethane-1,2-diamine (TMED), which were known to be very effective oxidative coupling catalysts (7,12). From our first kinetic studies it appeared that binuclear copper complexes are the active species as in some copper-containing enzymes. By applying the very strongly chelating TMED we were able to isolate crystals of the catalyst and to determine its structure by X-ray diffraction (13). Figure 1 shows this structure for the TMED complex of basic copper chloride Cu(0H)Cl prepared from CuCl by oxidation in moist pyridine. [Pg.10]

One of the important consequences of studying catalysis by mutant enzymes in comparison with wild-type enzymes is the possibility of identifying residues involved in catalysis that are not apparent from crystal structure determinations. This has been usefully applied (Fersht et al., 1988) to the tyrosine activation step in tyrosine tRNA synthetase (47) and (49). The residues Lys-82, Arg-86, Lys-230 and Lys-233 were replaced by alanine. Each mutation was studied in turn, and comparison with the wild-type enzyme revealed that each mutant was substantially less effective in catalysing formation of tyrosyl adenylate. Kinetic studies showed that these residues interact with the transition state for formation of tyrosyl adenylate and pyrophosphate from tyrosine and ATP and have relatively minor effects on the binding of tyrosine and tyrosyl adenylate. However, the crystal structures of the tyrosine-enzyme complex (Brick and Blow, 1987) and tyrosyl adenylate complex (Rubin and Blow, 1981) show that the residues Lys-82 and Arg-86 are on one side of the substrate-binding site and Lys-230 and Lys-233 are on the opposite side. It would be concluded from the crystal structures that not all four residues could be simultaneously involved in the catalytic process. Movement of one pair of residues close to the substrate moves the other pair of residues away. It is therefore concluded from the kinetic effects observed for the mutants that, in the wild-type enzyme, formation of the transition state for the reaction involves a conformational change to a structure which differs from the enzyme structure in the complex with tyrosine or tyrosine adenylate. The induced fit to the transition-state structure must allow interaction with all four residues simultaneously. [Pg.366]

The combined use of the modem tools of surface science should allow one to understand many fundamental questions in catalysis, at least for metals. These tools afford the experimentalist with an abundance of information on surface structure, surface composition, surface electronic structure, reaction mechanism, and reaction rate parameters for elementary steps. In combination they yield direct information on the effects of surface structure and composition on heterogeneous reactivity or, more accurately, surface reactivity. Consequently, the origin of well-known effects in catalysis such as structure sensitivity, selective poisoning, ligand and ensemble effects in alloy catalysis, catalytic promotion, chemical specificity, volcano effects, to name just a few, should be subject to study via surface science. In addition, mechanistic and kinetic studies can yield information helpful in unraveling results obtained in flow reactors under greatly different operating conditions. [Pg.2]

Studies on the effect of pH on peroxidase catalysis, or the heme-linked ionization, have provided much information on peroxidase catalysis and the active site structure. Heme-linked ionization has been observed in kinetic, electrochemical, absorption spectroscopic, proton balance, and Raman spectroscopic studies. Kinetic studies show that compound I formation is base-catalyzed (72). The pKa values are in the range of 3 to 6. The reactions of compounds I and II with substrates are also pH-dependent with pKa values in a similar range (72). Ligand binding (e.g. CO, O2 or halide ions) to ferrous and ferric peroxidases is also pH-dependent. A wide range of pKa values has been reported (72). The redox potentials of Fe3+/Fe2+ couples for peroxidases measured so far are all affected by pH. The pKa values are between 6 and 8, indicative of an imidazole group of a histidine residue (6, 31-33),... [Pg.185]

Structures have been determined for [Fe(gmi)3](BF4)2 (gmi = MeN=CHCF[=NMe), the iron(II) tris-diazabutadiene-cage complex of (79) generated from cyclohexanedione rather than from biacetyl, and [Fe(apmi)3][Fe(CN)5(N0)] 4F[20, where apmi is the Schiff base from 2-acetylpyridine and methylamine. Rate constants for mer fac isomerization of [Fe(apmi)3] " were estimated indirectly from base hydrolysis kinetics, studied for this and other Schiff base complexes in methanol-water mixtures. The attenuation by the —CH2— spacer of substituent effects on rate constants for base hydrolysis of complexes [Fe(sb)3] has been assessed for pairs of Schiff base complexes derived from substituted benzylamines and their aniline analogues. It is generally believed that iron(II) Schiff base complexes are formed by a template mechanism on the Fe " ", but isolation of a precursor in which two molecules of Schiff base and one molecule of 2-acetylpyridine are coordinated to Fe + suggests that Schiff base formation in the presence of this ion probably occurs by attack of the amine at coordinated, and thereby activated, ketone rather than by a true template reaction. ... [Pg.442]

Snapper and Hoveyda reported a catalytic enantioselective Strecker reaction of aldimines using peptide-based chiral titanium complex [Eq. (13.11)]. Rapid and combinatorial tuning of the catalyst structure is possible in their approach. Based on kinetic studies, bifunctional transition state model 24 was proposed, in which titanium acts as a Lewis acid to activate an imine and an amide carbonyl oxygen acts as a Bronsted base to deprotonate HCN. Related catalyst is also effective in an enantioselective epoxide opening by cyanide "... [Pg.389]

In 1998, Hasanayn and Streitwieser reported the kinetics and isotope effects of the Aldol-Tishchenko reaction . They studied the reaction between lithium enolates of isobu-tyrophenone and two molecule of beuzaldehyde, which results iu the formation of a 1,3-diol monoester after protonation (Figure 28). They analyzed several aspects of this mechanism experimentally. Ab initio molecular orbital calculatious ou models are used to study the equilibrium and transition state structures. The spectroscopic properties of the lithium enolate of p-(phenylsulfonyl) isobutyrophenone (LiSIBP) have allowed kinetic study of the reaction. The computed equilibrium and transition state structures for the compounds in the sequence of reactions in Figure 28 are given along with the computed reaction barriers and energy in Figure 29 and Table 6. [Pg.38]


See other pages where Kinetic studies structural effects is mentioned: [Pg.316]    [Pg.315]    [Pg.88]    [Pg.23]    [Pg.305]    [Pg.139]    [Pg.129]    [Pg.537]    [Pg.551]    [Pg.711]    [Pg.116]    [Pg.136]    [Pg.254]    [Pg.154]    [Pg.366]    [Pg.89]    [Pg.355]    [Pg.35]    [Pg.293]    [Pg.235]    [Pg.39]    [Pg.33]    [Pg.49]    [Pg.172]    [Pg.277]    [Pg.3]    [Pg.39]    [Pg.389]    [Pg.126]    [Pg.280]    [Pg.45]    [Pg.133]    [Pg.278]    [Pg.80]   
See also in sourсe #XX -- [ Pg.344 ]

See also in sourсe #XX -- [ Pg.294 ]




SEARCH



Kinetic studies

Kinetics, studies

© 2024 chempedia.info