Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones silyl enol ether formation

Corriu and coworkers have reported an alternative procedure for the conjugate addition of ketones to a.P-unsaturated acceptors which employs CsF-(RO)4Si (Scheme 56) 126 this procedure affords adducts with a,3-enones, oc.fj-unsaturated esters and a,3-unsaturated amides. Mechanistically, silyl enol ether formation occurs initially, followed by fluoride ion catalyzed enolate formation. [Pg.100]

Reddy, D. R., Thornton, E. R. A very mild, catalytic and versatile procedure for a-oxidation of ketone silyl enol ethers using (salen)manganese(lll) complexes a new, chiral complex giving asymmetric induction. A possible model for selective biochemical oxidative reactions through enol formation. J. Chem. Soc., Chem. Commun. 1992, 172-173. [Pg.667]

Introduction and stereochemical control syn,anti and E,Z Relationship between enolate geometry and aldol stereochemistry The Zimmerman-Traxler transition state Anti-selective aldols of lithium enolates of hindered aryl esters Syn-selective aldols of boron enolates of PhS-esters Stereochemistry of aldols from enols and enolates of ketones Silyl enol ethers and the open transition state Syn selective aldols with zirconium enolates The synthesis of enones E,Z selectivity in enone formation from aldols Recent developments in stereoselective aldol reactions Stereoselectivity outside the Aldol Relationship A Synthesis ofJuvabione A Note on Stereochemical Nomenclature... [Pg.43]

If the electrophile is a vinyl triflate, it is essential to add LiCl to the reaction so that the chloride may displace triflate from the palladium o-complex. Transmetallation takes place with chloride on palladium but not with triflate. This famous example illustrates the similar regioselectivity of enol triflate formation from ketones to that of silyl enol ether formation discussed in chapter 3. Kinetic conditions give the less 198 and thermodynamic conditions the more highly substituted 195 triflate. [Pg.326]

This approach can use the inherent regioselectivity of silyl enol ether formation (chapter 3) using kinetic or thermodynamic enolisation. Hence kinetic enolisation of enones (chapter 11) occurs on the a side leading to 2-Me3SiO-butadienes such as 222. Epoxidation of this silyl enol ether gives the unstable silyloxy ketone 223 which can be desilylated by fluoride ion and hence transformed into the hydroxyketone 225 or acetoxy ketone 224. These transformations are useful because the hydroxy ketones can be unstable34 (see below). [Pg.798]

The treatment of an ester (or lactone) with a base and a silyl halide or trillate gives rise to a particular type of sUyl enol ether normally referred to as a silyl ketene acetal. The extent of O- versus C-silylation depends on the structure of the ester and the reaction conditions. The less-bulky methyl or ethyl (or 5-tert-butyl) esters are normally good substrates for O-silylation using LDA as the base. Acyclic esters can give rise to two geometrical isomers of the silyl ketene acetal. Good control of the ratio of these isomers is often possible by careful choice of the conditions. The f-isomer is favoured with LDA in THF, whereas the Z-isomer is formed exclusively by using THF/HMPA (1.24). Methods to effect stereoselective silyl enol ether formation from acyclic ketones are less well documented. ... [Pg.14]

Deprotonation at the more substituted alpha carbon is slower since it is more crowded, but the resulting thermodynamic enolate is more stable since it has a more substituted double bond. The thermodynamic enolate is favored when the reaction is allowed to equilibrate using higher temperatures and either an excess of ketone or a weaker base allows the reverse reaction to occur. In another approach, an enolate is trapped with trimethyMyl chloride (TMSCl) to give the thermodynamic silyl enol ether. The reversible mechanism of the silyl enol ether formation, along with the warmer reaction conditions, promotes equilibration, and, therefore, favors the more stable product. [Pg.111]

Another preparative method for the enone 554 is the reaction of the enol acetate 553 with allyl methyl carbonate using a bimetallic catalyst of Pd and Tin methoxide[354,358]. The enone formation is competitive with the allylation reaction (see Section 2.4.1). MeCN as a solvent and a low Pd to ligand ratio favor enone formation. Two regioisomeric steroidal dienones, 558 and 559, are prepared regioselectively from the respective dienol acetates 556 and 557 formed from the steroidal a, /3-unsaturated ketone 555. Enone formation from both silyl enol ethers and enol acetates proceeds via 7r-allylpalladium enolates as common intermediates. [Pg.364]

TMCS A poor silylating reagent unless used in the presence of base (e.g., pyridine, diethylamine). Causes extensive enol-ether formation with unprotected ketone groups. Mainly used to catalyze the reaction of other silylating reagents. [Pg.432]

The composition of the enol ethers trimethylsilyl prepared from an enolate mixture reflects the enolate composition. If the enolate formation can be done with high regio-selection, the corresponding trimethylsilyl enol ether can be obtained in high purity. If not, the silyl enol ether mixture must be separated. Trimethylsilyl enol ethers can be prepared directly from ketones. One procedure involves reaction with trimethylsilyl... [Pg.15]

The enolates of other carbonyl compounds can be used in mixed aldol reactions. Extensive use has been made of the enolates of esters, thiol esters, amides, and imides, including several that serve as chiral auxiliaries. The methods for formation of these enolates are similar to those for ketones. Lithium, boron, titanium, and tin derivatives have all been widely used. The silyl ethers of ester enolates, which are called silyl ketene acetals, show reactivity that is analogous to silyl enol ethers and are covalent equivalents of ester enolates. The silyl thioketene acetal derivatives of thiol esters are also useful. The reactions of these enolate equivalents are discussed in Section 2.1.4. [Pg.78]

Palladium-catalyzed bis-silylation of methyl vinyl ketone proceeds in a 1,4-fashion, leading to the formation of a silyl enol ether (Equation (47)).121 1,4-Bis-silylation of a wide variety of enones bearing /3-substituents has become possible by the use of unsymmetrical disilanes, such as 1,1-dichloro-l-phenyltrimethyldisilane and 1,1,1-trichloro-trimethyldisilane (Scheme 28).129 The trimethylsilyl enol ethers obtained by the 1,4-bis-silylation are treated with methyllithium, generating lithium enolates, which in turn are reacted with electrophiles. The a-substituted-/3-silyl ketones, thus obtained, are subjected to Tamao oxidation conditions, leading to the formation of /3-hydroxy ketones. This 1,4-bis-silylation reaction has been extended to the asymmetric synthesis of optically active /3-hydroxy ketones (Scheme 29).130 The key to the success of the asymmetric bis-silylation is to use BINAP as the chiral ligand on palladium. Enantiomeric excesses ranging from 74% to 92% have been attained in the 1,4-bis-silylation. [Pg.745]

A concerted mechanism has also been discussed [29,30], involving either a 2+2+1 or 3+2 mechanism. To avoid trimolecular reactions this requires an interaction between Rh(I) and silanes prior to the reaction with a ketone. Interaction of silanes not leading to oxidative addition usually requires high-valent metals as we have seen in Chapter 2. The model is shown in Figure 18.16 it proved useful for the explanation of the enantiomers formed in different instances. The formation of a rhodium-carbon bond is included and thus formation of silyl enol ethers remains a viable side-path. [Pg.382]

The use of /i-ketocstcrs and malonic ester enolates has largely been supplanted by the development of the newer procedures based on selective enolate formation that permit direct alkylation of ketone and ester enolates and avoid the hydrolysis and decarboxylation of ketoesters intermediates. Most enolate alkylations are carried out by deprotonating the ketone under conditions that are appropriate for kinetic or thermodynamic control. Enolates can also be prepared from silyl enol ethers and by reduction of enones (see Section 1.3). Alkylation also can be carried out using silyl enol ethers by reaction with fluoride ion.31 Tetraalkylammonium fluoride salts in anhydrous solvents are normally the... [Pg.14]

Products of the type (24) also result from enolizable ketones without the formation of silyl enol ethers if the reaction is carried out in the presence of tertiary phosphines. The proposed mechanism involves the betaine R3P—SiMe2 as the silylene transfer agent. In preventing a 1,3-hydrogen migration, the phosphine may well induce dimerization prior to oxasilacyclopropane formation. The dioxadisilacyclohexane (24) can be reduced with LiAIHU to give dimethylsilyl-substituted carbinols, so the reaction is of synthetic value (Scheme 34) (78JA7074). [Pg.583]

The use of aryl-A3-iodanes for C-heteroatom bond formation at the a-carbon atoms of ketones and / -dicarbonyl compounds, and related transformations of silyl enol ethers and silyl ketene acetals, has been exhaustively summarized in recent reviews (Scheme 27) [5,8]. Reactions of this type are especially useful for the introduction of oxygen ligands (e. g., L2 = OH, OR, OCOR, 0S02R, OPO(OR)2), and have been extensively utilized for the synthesis of a-sulfonyl-oxy ketones and a-hydroxy dimethyl ketals. [Pg.149]

Similar properties and applications as for HMDS useful for amino acid analyses provides good response for electron capture detection has relatively low silyl donating ability and is usually used in the presence of a base such as pyridine may cause enol-ether formation with unprotected ketone groups often used as a catalyst with other silylating reagents... [Pg.102]

Presumably the silyl enol ether of 37 adds in a conjugate fashion to the unsaturated ester 39 and the intermediate enolate then cyclises onto the cation 40 to give 38. This will happen only if the stereochemistry of 40 is the same as that of the product 38 as the 4/5 and 4/6 ring fusions must both be cis. This suggests that the first step is reversible. The formation of the cyclobutane requires that particular relationship between ketone and unsaturated ester so this kind of reaction is less versatile than photochemical cyclisation. Asymmetric versions of these reactions are also known.14 Probably the most versatile thermal method to make cyclobutanes uses ketenes and is the subject of the next chapter. [Pg.248]

Aromatisation to 29 simply requires enolate formation and methylation to give 30. Hydrolysis of the silyl enol ether with CF3CO2H gave the ketone 29. [Pg.272]

The same authors chose another very reactive nucleophilic function, the silyl enol ether group, which upon reaction with living cationic chain ends of poly(vinyl ether)s, also leads to a carbon-carbon bond with formation of a ketone (Scheme 4). Model reactions of living poly(IBVE) with various monofunctional silyl enol ethers [47] showed that the a-substituent R should have electron-donating properties in order to increase the electron density on the double bond. [Pg.31]

The best catalyst for this transformation was AgSbFg (10 mol%), and (3-ketoesters, malonates, and silyl enol ethers have been used for the nucleophilic addition on the pyridinium intermediate DD. The dihydroisoquinolines 48 have been further used in several reactions in order to assemble the framework of various alkaloids. One example is given in the formation of dihydroisoquinoline 49, bearing a pendent a, 3-unsaturated ketone. Compound 49 can rearrange to the tetracycle 50 (related to the core structure of karachine, Scheme 5.23), using TMSOTf, via a tandem Michael addition-Mannich reaction process (intermediates EE and FF). [Pg.154]


See other pages where Ketones silyl enol ether formation is mentioned: [Pg.42]    [Pg.42]    [Pg.561]    [Pg.547]    [Pg.99]    [Pg.110]    [Pg.297]    [Pg.596]    [Pg.84]    [Pg.104]    [Pg.363]    [Pg.794]    [Pg.66]    [Pg.867]    [Pg.272]    [Pg.348]    [Pg.23]    [Pg.595]    [Pg.59]    [Pg.469]    [Pg.589]    [Pg.253]    [Pg.1774]    [Pg.231]    [Pg.30]    [Pg.739]    [Pg.132]    [Pg.539]   
See also in sourсe #XX -- [ Pg.415 ]




SEARCH



Enol ethers formation

Enol formate

Enol formation

Enol ketones

Enolate formation

Enolates formation

Enolates silylation

Enols ketonization

Ethers formation

Ethers ketones

Ketone enolate

Ketone enolate. formation

Ketone enolates

Ketone enolates formation

Ketones enolization

Ketones formation

Ketonization-enolization

Silyl enol ethers

Silyl enol ethers, formation

Silyl enolate

Silyl enolates

Silyl formation

Silyl ketone

Silyl ketone enolates

Silyl ketones, formation

© 2024 chempedia.info