Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones catalytic reduction

Methyldihydrocodeine [xxn] on heating with thionyl chloride is dehydrated to 6-methyldesoxycodeine-C [xxm] phosphorus penta-chloride effects chlorination in position 1 in addition to dehydration. 6-methyldesoxycodeine-C is non-phenolic and gives no formaldehyde on ozonolysis the ozonide on treatment with iodine and alkali yields iodoform, indicating formation of a methyl ketone. Catalytic reduction of [xxm] gives 6-methyltetrahydrodesoxycodeine [xxiv] [16]. [Pg.152]

By catalytic reduction of a p-unsaturated ketones, prepared from aldehydes by the Claisen - Schmidt reaction (see under Aromatic Aldehydes), for example ... [Pg.726]

For most laboratory scale reductions of aldehydes and ketones catalytic hydro genation has been replaced by methods based on metal hydride reducing agents The two most common reagents are sodium borohydride and lithium aluminum hydride... [Pg.628]

Reduction. Most ketones are readily reduced to the corresponding secondary alcohol by a variety of hydrogenation processes. The most commonly used catalysts are palladium, platinum, and nickel For example, 4-methyl-2-pentanol (methyl isobutyl carbinol) is commercially produced by the catalytic reduction of 4-methyl-2-pentanone (methyl isobutyl ketone) over nickel. [Pg.487]

Contaminants and by-products which are usually present in 2- and 4-aminophenol made by catalytic reduction can be reduced or even removed completely by a variety of procedures. These include treatment with 2-propanol (74), with aUphatic, cycloaUphatic, or aromatic ketones (75), with aromatic amines (76), with toluene or low mass alkyl acetates (77), or with phosphoric acid, hydroxyacetic acid, hydroxypropionic acid, or citric acid (78). In addition, purity may be enhanced by extraction with methylene chloride, chloroform (79), or nitrobenzene (80). [Pg.311]

The introduction of tritium into molecules is most commonly achieved by reductive methods, including catalytic reduction by tritium gas, PH2], of olefins, catalytic reductive replacement of halogen (Cl, Br, or I) by H2, and metal pH] hydride reduction of carbonyl compounds, eg, ketones (qv) and some esters, to tritium-labeled alcohols (5). The use of tritium-labeled building blocks, eg, pH] methyl iodide and pH]-acetic anhydride, is an alternative route to the preparation of high specific activity, tritium-labeled compounds. The use of these techniques for the synthesis of radiolabeled receptor ligands, ie, dmgs and dmg analogues, has been described ia detail ia the Hterature (6,7). [Pg.438]

Since ivermectin (= 22,23-dihydroavermectin B ) is obtained by catalytic reduction of avermectin B, the same procedure using tritium gas convenientiy affords tritiated ivermectin (22,23- [JT]-22,23-dihydroavermectin B ). The preparation of a tritiated derivative containing a 22,23-double bond starts with the readily available 5-ketone, which is reduced with [JT]-sodium borohydride stereospecificaHy to a 5- [JT]-derivative (40). Carbon-14 labeled avermectins can be obtained by a biosynthetic process using sodium (l- C)propionate as labeled precursor (48). [Pg.284]

In section V-A it has been pointed out that catalytic reduction of conjugated enones is usually a good method for the preparation of p- or y-labeled ketones. To overcome certain stereochemical problems, however, it is occasionally necessary to use the lithium-ammonia reduction. In this case deuteration takes place at the / -carbon and generally leads to the thermodynamically more stable product (see chapter 1). [Pg.188]

Recent advances in the asymmetric catalytic reduction of ketones using chiral oxazaborolidines as ligands 98MI64. [Pg.273]

A thioamide of isonicotinic acid has also shown tuberculostatic activity in the clinic. The additional substitution on the pyridine ring precludes its preparation from simple starting materials. Reaction of ethyl methyl ketone with ethyl oxalate leads to the ester-diketone, 12 (shown as its enol). Condensation of this with cyanoacetamide gives the substituted pyridone, 13, which contains both the ethyl and carboxyl groups in the desired position. The nitrile group is then excised by means of decarboxylative hydrolysis. Treatment of the pyridone (14) with phosphorus oxychloride converts that compound (after exposure to ethanol to take the acid chloride to the ester) to the chloro-pyridine, 15. The halogen is then removed by catalytic reduction (16). The ester at the 4 position is converted to the desired functionality by successive conversion to the amide (17), dehydration to the nitrile (18), and finally addition of hydrogen sulfide. There is thus obtained ethionamide (19)... [Pg.255]

Catalytic reduction of codeine (2) affords the analgesic dihydrocodeine (7) Oxidation of the alcohol at 6 by means of the Oppenauer reaction gives hydrocodone (9)an agent once used extensively as an antitussive. It is of note that treatment of codeine under strongly acidic conditions similarly affords hydrocodone by a very unusual rearrangement of an allyl alcohol to the corresponding enol, followed by ketonization. [Pg.288]

As in the case of the steroids, introduction of additional nuclear substituents yields morphine analogs of increased potency. The more important of these are derived from one of the minor alkaloids that occur in opium. Thebaine (14), present in crude opium in about one-tenth the amount of morphine, exhibits a reactive internal diene system that is well known to undergo various addition reactions in a 1,4 manner (e.g., bromination). Thus, reaction with hydrogen peroxide in acid may be visualized to afford first the 14-hydroxy-6-hemiketal (15). Hydrolysis yields the isolated unsaturated ketone (16). Catalytic reduction... [Pg.289]

D) 4 -[N-Ethyi-1 "-Methyl-2 -(4" -Methoxyphenyl)Ethylamino]Butyi-3,4-Dimethoxybenzoate Hydrochloride 10.3 g of 4 -iodobutyl-3,4-dimethoxybenzoate and 11.0 g of N-ethyl-p-methoxyphenylisopropylamine (obtained by catalytic reduction of an alcoholic solution of an excess quantity (60%) of p-methoxy-phenyl-acetone, to which was added a 33% (weight-for-weight) aqueous solution of ethylamine, with Pt as a catalyst), were boiled in 200 ml of methyl ethyl ketone for 20 hours, cooled and the iodine ion was determined the reaction was found to be complete. Then the methyl ethyl ketone was evaporated in vacuo and the residue was dissolved in 300 ml of water and 30 ml of ether the layers were separated and the water layer was extracted twice more with 20 ml portions of ether. [Pg.901]

Compound A, C H O, was found to be an optically active alcohol. Despite its apparent unsaturation, no hydrogen was absorbed on catalytic reduction over a palladium catalyst. On treatment of A with dilute sulfuric acid, dehydration occurred and an optically inactive alkene B, Q iH14, was produced as the major product. Alkene B, on ozonolysis, gave two products. One product was identified as propanal, CH3CH2CHO. Compound C, the other product, was shown to be a ketone, CgHgO. How many degrees of unsaturation does A have Write the reactions, and identify A, B, and C. [Pg.329]

Scheme 5. Corey s diastereoselective catalytic reduction of ketone 21. Scheme 5. Corey s diastereoselective catalytic reduction of ketone 21.
Other S/N ligands have been investigated in the enantioselective catalytic reduction of ketones with borane. Thus, Mehler and Martens have reported the synthesis of sulfur-containing ligands based on the L-methionine skeleton and their subsequent application as new chiral catalysts for the borane reduction of ketones." The in situ formed chiral oxazaborolidine catalyst has been used in the reduction of aryl ketones, providing the corresponding alcohols in nearly quantitative yields and high enantioselectivities of up to 99% ee, as shown in Scheme 10.60. [Pg.338]

Formal isomerization of the double bond of testosterone to the 1-position and methylation at the 2-position provides yet another anabolic/androgenic agent. Mannich condensation of the fully saturated androstane derivative 93 with formaldehyde and di-methylamine gives aminoketone 94. A/B-trans steroids normally enolize preferentially toward the 2-position, explaining the regiospecificity of this reaction. Catalytic reduction at elevated temperature affords the 2a-methyl isomer 95. It is not at all unlikely that the reaction proceeds via the 2-methylene intermediate. The observed stereochemistry is no doubt attributable to the fact that the product represents the more stable equatorial isomer. The initial product would be expected to be the p-isomer but this would experience a severe 1,3-diaxial non-bonded interaction and epimerize via the enol. Bromination of the ketone proceeds largely at the tertiary carbon adjacent to the carbonyl (96). Dehydrohalogenation... [Pg.155]

In a different approach a super-high-throughput ee-assay was developed on the basis of chirally modified capillary array electrophoresis (CAE).90 CAE was used in the Human Genome Project, and commercially available instruments have been developed which comprise a high number of capillaries in parallel, for example the 96-capillary unit MegaBACE consisting of 6 bundles of 16 capillaries.91 The system can address a 96-well microtiter plate. It was adapted to perform ee-determinations of chiral amines, which are potentially accessible by catalytic reductive amination of ketones, transition metal catalyzed Markovnikov addition of ammonia, or enzymatic hydrolysis of acetamides (Scheme 14).90... [Pg.529]

Addition of triethylamine to the oxazaborolidine reaction system can significantly increase the enantioselectivity, especially in dialkyl ketone reductions.79 In 1987, Corey et al.80 reported that the diphenyl derivatives of 79a afford excellent enantioselectivity (>95%) in the asymmetric catalytic reduction of various ketones. This oxazaborolidine-type catalyst was named the CBS system based on the authors names (Corey, Bakshi, and Shibata). Soon after, Corey s group81 reported that another fi-methyl oxazaborolidine 79b (Fig. 6-6) was easier to prepare and to handle. The enantioselectivity of the 79b-catalyzed reaction is comparable with that of the reaction mediated by 79a (Scheme 6-36).81 The -naphthyl derivative 82 also affords high enantioselectivity.78 As a general procedure, oxazaborolidine catalysts may be used in 5-10 mol%... [Pg.367]

Besides the above-mentioned catalytic asymmetric hydrogenation method for preparing fluorine-containing compounds, other reactions such as asymmetric reduction of achiral fluorine-containing ketones are also feasible methods for preparing chiral fluorinated compounds. For example, the oxazabor-olidine system, which has been discussed in Chapter 6, can also be employed in the catalytic reduction of trifluoromethyl ketones. Scheme 8 40 depicts some examples.85... [Pg.482]

In 1969, Szantay and co-workers published a linear synthesis of (+)-yohimbine and (—)-P-yohimbine (75) in full detail (220). Tetracyclic key intermediate 400, obtained from 3,4-dihydro-p-carboline and a properly substituted a,p-unsatu-rated ketone (173), was treated with a proper phosphonoacetic acid derivative to give unsaturated nitrile 401 or unsaturated ester 402. Catalytic reduction of the latter resulted almost exclusively in 404 with normal stereo arrangement, while reduction of 401 supplied a mixture of normal and epialloindolo[2,3-a] quinolizines 403 and 405, respectively. Dieckmann ring closure of diester 404 gave 18a-methoxycarbonylyohimbone (407) as the thermodynamically favored... [Pg.212]

Asymmetric catalytic reduction reactions represent one of the most efficient and convenient methods to prepare a wide range of enantiomerically pure compounds (i.e. a-amino acids can be prepared from a-enamides, alcohols from ketones and amines from oximes or imines). The chirality transfer can be accomplished by different types of chiral catalysts metallic catalysts are very efficient for the hydrogenation of olefins, some ketones and oximes, while nonmetallic catalysts provide a complementary method for ketone and oxime hydrogenation. [Pg.115]

Table 11.4 Catalytic reduction of ketones by nonmetallic catalysts (results according to the relevant publications). Table 11.4 Catalytic reduction of ketones by nonmetallic catalysts (results according to the relevant publications).
After extensive developmental studies, [35] the final crucial element in our most recent synthesis of epothilone B involves an asymmetric catalytic reduction of the C3 ketone of 67 proceeding via a modified Noyori procedure (Scheme 2.8, 67—>68). In the event, Noyori reduction of ketone 67 afforded the desired diol 68 with excellent diasteresdectivity (>95 5). The ability to successftdly control the desired C3 stereochemistry of the late stage intermediate 68 permitted us to introduce the Cl-C7 fragment into the synthesis as an achiral building block. [Pg.21]

Catalytic processes based on the use of electrogenerated nickel(O) bipyridine complexes have been a prominent theme in the laboratories of Nedelec, Perichon, and Troupel some of the more recent work has involved the following (1) cross-coupling of aryl halides with ethyl chloroacetate [143], with activated olefins [144], and with activated alkyl halides [145], (2) coupling of organic halides with carbon monoxide to form ketones [146], (3) coupling of a-chloroketones with aryl halides to give O -arylated ketones [147], and (4) formation of ketones via reduction of a mixture of a benzyl or alkyl halide with a metal carbonyl [148]. [Pg.229]


See other pages where Ketones catalytic reduction is mentioned: [Pg.517]    [Pg.495]    [Pg.103]    [Pg.157]    [Pg.167]    [Pg.179]    [Pg.196]    [Pg.259]    [Pg.291]    [Pg.349]    [Pg.12]    [Pg.20]    [Pg.66]    [Pg.287]    [Pg.580]    [Pg.496]    [Pg.889]    [Pg.270]    [Pg.120]    [Pg.149]    [Pg.103]    [Pg.517]    [Pg.23]    [Pg.47]   
See also in sourсe #XX -- [ Pg.443 ]




SEARCH



Catalytic reduction

Enantioselectivity catalytic reduction of ketone

Reductive catalytic

Unsaturated ketone catalytic reduction

© 2024 chempedia.info