Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones alcohol oxidations

Enone Formation from Ketones, and Oxidation of Alcohols... [Pg.104]

Since adipic acid has been produced in commercial quantities for almost 50 years, it is not surprising that many variations and improvements have been made to the basic cyclohexane process. In general, however, the commercially important processes stiU employ two major reaction stages. The first reaction stage is the production of the intermediates cyclohexanone [108-94-1] and cyclohexanol [108-93-0], usuaHy abbreviated as KA, KA oil, ol-one, or anone-anol. The KA (ketone, alcohol), after separation from unreacted cyclohexane (which is recycled) and reaction by-products, is then converted to adipic acid by oxidation with nitric acid. An important alternative to this use of KA is its use as an intermediate in the manufacture of caprolactam, the monomer for production of nylon-6 [25038-54-4]. The latter use of KA predominates by a substantial margin on a worldwide basis, but not in the United States. [Pg.240]

Although many variations of the cyclohexane oxidation step have been developed or evaluated, technology for conversion of the intermediate ketone—alcohol mixture to adipic acid is fundamentally the same as originally developed by Du Pont in the early 1940s (98,99). This step is accomplished by oxidation with 40—60% nitric acid in the presence of copper and vanadium catalysts. The reaction proceeds at high rate, and is quite exothermic. Yield of adipic acid is 92—96%, the major by-products being the shorter chain dicarboxytic acids, glutaric and succinic acids,and CO2. Nitric acid is reduced to a combination of NO2, NO, N2O, and N2. Since essentially all commercial adipic acid production arises from nitric acid oxidation, the trace impurities patterns ate similar in the products of most manufacturers. [Pg.242]

Chromium compounds decompose primary and secondary hydroperoxides to the corresponding carbonyl compounds, both homogeneously and heterogeneously (187—191). The mechanism of chromium catalyst interaction with hydroperoxides may involve generation of hexavalent chromium in the form of an alkyl chromate, which decomposes heterolyticaHy to give ketone (192). The oxidation of alcohol intermediates may also proceed through chromate ester intermediates (193). Therefore, chromium catalysis tends to increase the ketone alcohol ratio in the product (194,195). [Pg.343]

Methyl ethyl ketone, a significant coproduct, seems likely to arise in large part from the termination reactions of j -butylperoxy radicals by the Russell mechanism (eq. 15, where R = CH and R = CH2CH2). Since alcohols oxidize rapidly vs paraffins, the j -butyl alcohol produced (eq. 15) is rapidly oxidized to methyl ethyl ketone. Some of the j -butyl alcohol probably arises from hydrogen abstraction by j -butoxy radicals, but the high efficiency to ethanol indicates this is a minor source. [Pg.343]

Oxidation of LLDPE starts at temperatures above 150°C. This reaction produces hydroxyl and carboxyl groups in polymer molecules as well as low molecular weight compounds such as water, aldehydes, ketones, and alcohols. Oxidation reactions can occur during LLDPE pelletization and processing to protect molten resins from oxygen attack during these operations, antioxidants (radical inhibitors) must be used. These antioxidants (qv) are added to LLDPE resins in concentrations of 0.1—0.5 wt %, and maybe naphthyl amines or phenylenediamines, substituted phenols, quinones, and alkyl phosphites (4), although inhibitors based on hindered phenols are preferred. [Pg.395]

Commercially, pure ozonides generally are not isolated or handled because of the explosive nature of lower molecular weight species. Ozonides can be hydrolyzed or reduced (eg, by Zn/CH COOH) to aldehydes and/or ketones. Hydrolysis of the cycHc bisperoxide (8) gives similar products. Catalytic (Pt/excess H2) or hydride (eg, LiAlH reduction of (7) provides alcohols. Oxidation (O2, H2O2, peracids) leads to ketones and/or carboxyUc acids. Ozonides also can be catalyticaHy converted to amines by NH and H2. Reaction with an alcohol and anhydrous HCl gives carboxyUc esters. [Pg.494]

Adipic acid (qv) has a wide variety of commercial uses besides the manufacture of nylon-6,6, and thus is a common industrial chemical. Many routes to its manufacture have been developed over the years but most processes in commercial use proceed through a two-step oxidation of cyclohexane [110-83-8] or one of its derivatives. In the first step, cyclohexane is oxidized with air at elevated temperatures usually in the presence of a suitable catalyst to produce a mixture of cyclohexanone [108-94-1] and cyclohexanol [108-93-0] commonly abbreviated KA (ketone—alcohol) or KA oil ... [Pg.232]

Nitrate. Cerium(III) nitrate hexahydrate [10294-41 -4] Ce(N03) 6H20, is a commercially available soluble salt of cerium, and because of ready decomposition to the oxide, it is used, for example, when a porous sohd is to be impregnated with cerium oxide. The nitrate is very soluble in water, up to about 65 wt %. It is also soluble in a wide range of polar organic solvents such as ketones, alcohols, and ethers. [Pg.367]

The oxidation of cyclohexane to a mixture of cyclohexanol and cyclohexanone, known as KA-od (ketone—alcohol, cyclohexanone—cyclohexanol cmde mixture), is used for most production (1). The earlier technology that used an oxidation catalyst such as cobalt naphthenate at 180—250°C at low conversions (2) has been improved. Cyclohexanol can be obtained through a boric acid-catalyzed cyclohexane oxidation at 140—180°C with up to 10% conversion (3). Unreacted cyclohexane is recycled and the product mixture is separated by vacuum distillation. The hydrogenation of phenol to a mixture of cyclohexanol and cyclohexanone is usually carried out at elevated temperatures and pressure ia either the Hquid (4) or ia the vapor phase (5) catalyzed by nickel. [Pg.425]

The plant was a stage in the production of nylon. It manufactured a mixture of cyclohexanone and cyclohexanol (known as KA, for the ketone/alcohol naixture) by oxidizing... [Pg.249]

Dipyridiue-chromium(VI) oxide2 was introduced as an oxidant for the conversion of acid-sensitive alcohols to carbonyl compounds by Poos, Arth, Beyler, and Sarett.3 The complex, dispersed in pyridine, smoothly converts secondary alcohols to ketones, but oxidations of primary alcohols to aldehydes are capricious.4 In 1968, Collins, Hess, and Frank found that anhydrous dipyridine-chromium(VI) oxide is moderately soluble in chlorinated hydrocarbons and chose dichloro-methane as the solvent.5 By this modification, primary and secondary alcohols were oxidized to aldehydes and ketones in yields of 87-98%. Subsequently Dauben, Lorber, and Fullerton showed that dichloro-methane solutions of the complex are also useful for accomplishing allylic oxidations.6... [Pg.85]

Since the transition state for alcohol oxidation and ketone reduction must be identical, the product distribution (under kinetic control) for reducing 2-butanone and 2-pentanone is also predictable. Thus, one would expect to isolate (R)-2-butanol if the temperature of the reaction was above 26 °C. On the contrary, if the temperature is less than 26 °C, (S)-2-butanol should result in fact, the reduction of... [Pg.208]

Secondary alcohols yield ketones on oxidation and these can be reacted with 2,4-dinitrophenylhydrazine to yield the corresponding colored hydrazones. [Pg.39]

Nitrile oxides are usually prepared via halogenation and dehydrohalogenation of aldoximes [11] or via dehydration of primary nitro alkanes (Scheme 1) [12]. However, it is important to note that nitrile oxides are relatively unstable and are prone to dimerization or polymerization, especially upon heating. 1,3-Dipolar cycioaddition of a nitrile oxide with a suitable olefin generates an isoxazoline ring which is a versatile synthetic intermediate in that it provides easy access to y-amino alcohols, )5-hydroxy ketones, -hydroxy nitriles, unsaturated oximes, and a host of other multifunctional molecules (Scheme 1) [5a]. Particularly for the formation of )5-hydroxy ketones, nitrile oxide-olefin cycioaddition serve as an alternative to the Aldol reaction. [Pg.2]

The complex Pd-(-)-sparteine was also used as catalyst in an important reaction. Two groups have simultaneously and independently reported a closely related aerobic oxidative kinetic resolution of secondary alcohols. The oxidation of secondary alcohols is one of the most common and well-studied reactions in chemistry. Although excellent catalytic enantioselective methods exist for a variety of oxidation processes, such as epoxidation, dihydroxy-lation, and aziridination, there are relatively few catalytic enantioselective examples of alcohol oxidation. The two research teams were interested in the metal-catalyzed aerobic oxidation of alcohols to aldehydes and ketones and became involved in extending the scopes of these oxidations to asymmetric catalysis. [Pg.84]

The tvans alcohol (47) might be made by reduction of ketone (48). Oxidation of (45) would give (48), but an alternative is to add an activating group and disconnect as a 1,3-dicarbonyl compound - standard strategy ior a symmetrical ketone. [Pg.369]

The activity of the FePeCli6-S/tert-butyl hydroperoxide (TBHP) catalytic system was studied under mild reaction conditions for the synthesis of three a,p-unsaturated ketones 2-cyclohexen-l-one, carvone and veibenone by allylic oxidation of cyclohexene, hmonene, and a-pinene, respectively. Substrate conversions were higher than 80% and ketone yields decreased in the following order cyclohexen-1-one (47%), verbenone (22%), and carvone (12%). The large amount of oxidized sites of monoterpenes, especially limonene, may be the reason for the lower ketone yield obtained with this substrate. Additional tests snggested that molecular oxygen can act as co-oxidant and alcohol oxidation is an intermediate step in ketone formation. [Pg.435]

The low allylic alcohols (< 6%) yield suggests that the alcohol is reoxidized to the corresponding ketone, probably by Fe =0 species (M = O) (29). Alcohol oxidation tests (Figure 49.2) confirm that the formation of alcohol is an intermediate step in the synthesis of the corresponding ketone, equations 9-11. [Pg.440]

Owing to the efficient oxidation of alcohols to ketones, alcohols can be used as the starting materials in oxidative cleavages. The conditions required are more vigorous than for the alcohol to ketone transformation (see Section 12.1.1). [Pg.1132]

Selective oxidations are possible for certain bicyclic hydrocarbons.285 Here, the bridgehead position is the preferred site of initial attack because of the order of reactivity of C—H bonds, which is 3° > 2° > 1°. The tertiary alcohols that are the initial oxidation products are not easily further oxidized. The geometry of the bicyclic rings (Bredt s rule) prevents both dehydration of the tertiary bridgehead alcohols and further oxidation to ketones. Therefore, oxidation that begins at a bridgehead position... [Pg.1148]

Effective catalysts for heterogeneous oxidations using 02 are mainly Pt and Pd with some activity by Ir70 and Ru.71 Much work has gone into alcohol oxidations that are dehydrogenations to ketones or aldehydes. Also, oxygen may be inserted at allylic positions of alkenes and these may be dehydrogenated to ketones or aldehydes.72 In the case of aldehydes, additional oxidation may be accomplished to produce acids.72,73... [Pg.240]

Ketoreductases catalyze the reversible reduction of ketones and oxidation of alcohols using cofactor NADH/NADPH as the reductant or NAD + /NADP+ as oxidant. Alcohol oxidases catalyze the oxidation of alcohols with dioxygen as the oxidant. Both categories of enzymes belong to the oxidoreductase family. In this chapter, the recent advances in the synthetic application of these two categories of enzymes are described. [Pg.136]

Kroutil, W., Mang, H., Edegger, K. and Faber, K. (2004) Recent advances in the biocatalytic reduction of ketones and oxidation of sec-alcohols. Current Opinion in Chemical Biology, 8 (2), 120-126. [Pg.161]

Another factor complicating the situation in composition of peroxyl radicals propagating chain oxidation of alcohol is the production of carbonyl compounds due to alcohol oxidation. As a result of alcohol oxidation, ketones are formed from the secondary alcohol oxidation and aldehydes from the primary alcohols [8,9], Hydroperoxide radicals are added to carbonyl compounds with the formation of alkylhydroxyperoxyl radical. This addition is reversible. [Pg.295]

The question about the competition between the homolytic and heterolytic catalytic decompositions of ROOH is strongly associated with the products of this decomposition. This can be exemplified by cyclohexyl hydroperoxide, whose decomposition affords cyclo-hexanol and cyclohexanone [5,6]. When decomposition is catalyzed by cobalt salts, cyclohex-anol prevails among the products ([alcohol] [ketone] > 1) because only homolysis of ROOH occurs under the action of the cobalt ions to form RO and R02 the first of them are mainly transformed into alcohol (in the reactions with RH and Co2+), and the second radicals are transformed into alcohol and ketone (ratio 1 1) due to the disproportionation (see Chapter 2). Heterolytic decomposition predominates in catalysis by chromium stearate (see above), and ketone prevails among the decomposition products (ratio [ketone] [alcohol] = 6 in the catalytic oxidation of cyclohexane at 393 K [81]). These ions, which can exist in more than two different oxidation states (chromium, vanadium, molybdenum), are prone to the heterolytic decomposition of ROOH, and this seems to be mutually related. [Pg.395]

Aryl and alkyl hydroxylations, epoxide formation, oxidative dealkylation of heteroatoms, reduction, dehalogenation, desulfuration, deamination, aryl N-oxygenation, oxidation of sulfur Oxidation of nucleophilic nitrogen and sulfur, oxidative desulfurization Oxidation of aromatic hydrocarbons, phenols, amines, and sulfides oxidative dealkylation, reduction of N-oxides Alcohol oxidation reduction of ketones Oxidative deamination... [Pg.343]

This complex oxidizes primary or secondary alcohols in DCE at 50° with little difference in the rate. The aldehydes or ketones are obtained in nearly quantitative yield. In this solvent, epoxidation of double bonds does not compete with alcohol oxidation. [Pg.255]


See other pages where Ketones alcohol oxidations is mentioned: [Pg.10]    [Pg.5]    [Pg.379]    [Pg.373]    [Pg.32]    [Pg.241]    [Pg.778]    [Pg.102]    [Pg.44]    [Pg.610]    [Pg.442]    [Pg.148]    [Pg.308]    [Pg.1578]    [Pg.33]    [Pg.176]    [Pg.288]   
See also in sourсe #XX -- [ Pg.88 , Pg.89 , Pg.90 , Pg.91 , Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 ]

See also in sourсe #XX -- [ Pg.447 , Pg.448 , Pg.450 ]




SEARCH



Alcohol to Ketone Oxidation State

Alcohols secondary oxidation, ketones/lactones

Alcohols, oxidation to ketones

Alcohols, oxidizing reagents ketones

Baeyer-Villiger Oxidation of Ketones in Fluorinated Alcohol Solvents

Deprotection and Oxidation of Alcohols to Ketones

Enone Formation from Ketones, and Oxidation of Alcohols

General Procedure for Transformation of Alcohols to Ketones by Jones Oxidation

Ketone secondary alcohols oxidized

Ketones (Cont alcohols by oxidation

Ketones alcohols

Ketones from oxidation of alcohols

Ketones oxidant

Ketones oxidation

Ketones secondary alcohols oxidation

Ketones via oxidation of secondary alcohols

Oxidation of Alcohols to Aldehydes, Ketones, and Carboxylic Acids

Oxidation of Alcohols to Aldehydes. Ketones, or Carboxylic Acids

Oxidation of Alkanes to Give Alcohols or Ketones

Oxidation of alcohol to ketone

Oxidation of alcohols to aldehydes and ketones

Oxidation of alcohols to aldehydes or ketones

Oxidation of secondary alcohols to ketones

Oxidations of Alcohols, Diols and Ketones with Fluorine

Oxidative cleavage of secondary alcohols and ketones

Oxidative ketones

Oxidative ketonization

Secondary alcohols oxidation to ketones

© 2024 chempedia.info