Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Journals reprints

Library of Congress, List of American Doctoral Dissertations Printed in 1912-1938, Government Printing OflRce, Washington, D. C., 1913-1940. Includes only printed academic dissertations received by the Library of Gongress. Most dissertations are unpublished some are in journal reprint form, others are mimeographed copies. [Pg.115]

If possible it, is useful to have a reference library available so that your desk and cupboards are not littered by books/ journals/ reprints, that may be needed elsewhere. Fortunately most institutes now have the facility to photocopy articles, papers, important pages of longer treatises and the like. Be sure that you photocopy title pages and the frontispices of journals, so that you later know what came from where. Some books, such as folio works are often not allowed... [Pg.152]

It is a peculiar and remarkable aspect of academic journals that their publishers make a profit while receiving almost all their copy entirely for free. Almost all journals require transfer of copyright from authors to publisher upon acceptance of submitted manuscripts. Technically, this requires that an author needs specific permission from the publisher to use his own manuscript later in practice, this permission is routinely granted upon written application. A few journals now seek only exclusive licenses from authors, one condition of which preserves the author s right to personally use his own work, and which leaves copyright ownership with the author(s) the license can also become void if the publisher fails to exploit it, and can yield royalties to the authors. In practice, this license removes the administrative burden of granting routine permissions by the publisher, and royalties on journal reprints are either nominal or absent. [Pg.571]

FIGURE 7.1 Menu pages in the Acrobat 8 Professional program, relating to document information and meta-data for (a) a typical journal reprint, with (b) the standard metadata schemas and (c) the advanced menu, where additional, more chemically relevant, metadata schemas can be added. The values, or more accurately, the absence of values for the various fields are typical for most Web-resident PDF files. [Pg.102]

MSLT observations (proportion of prestudy baseline latency to Stage 2 sleep) for nap and caffeine groiq)s during sleep loss. The presence of brackets indicates overall statistically significant differences between groups at that time point Data points within brackets indicate nonsignificant differences From Bonnet et al (1995). Copyright 1995 by 5/eep journal Reprinted with permission. [Pg.193]

Fig. 5.5 Time variation of first six harmonics coefficients for a 1.5-cm-diameter silicon oil droplet in water driven to its 6 mode by acoustic forcing, the abscissa is time (frame) [27]. 2006 Cambridge Journals reprinted with permission... Fig. 5.5 Time variation of first six harmonics coefficients for a 1.5-cm-diameter silicon oil droplet in water driven to its 6 mode by acoustic forcing, the abscissa is time (frame) [27]. 2006 Cambridge Journals reprinted with permission...
Wilson, H. S. and Zoss, L. M., A practical problem in process analysis. Control Theory Notebook, ISA Journal Reprints, 1962, pp. 25-8. [Pg.92]

Figure 4.49 reprinted with permission from Pranata J and W L Jorgensen. Computational Studies on FK506 Conformational Search and Molecular Dynamics Simulations in Water. The Journal of the American Chemical Society 113 9483-9493. 1991 American Chemical Society. [Pg.19]

Figure 4.50 from Molecular Parameters for Organosilicon Compounds Calculated from Ab Initio Computations, Grigoras S and T H Lame, Journal of Computational Chemistry 9 25-39, 1988. Reprinted by permission of John Wiley Sons, Inc. [Pg.19]

Figure 5.23 reprinted with permission from Doubleday C, J Mclver, M Page and T Zielinski. Temperature Dependence of the Trcmsition-State Structure for the Disproportionation of 1 lydrogen Atom with Ethyl Radical. The Journal of the American Chemical Society 107 5800-5801. c,1985 American Chemical Society. [Pg.19]

Figure 7.13 reprinted with permission from Jorgensen W L, R C Binning Jr and B Bigot. Structures md Properties of Organic Liquids u-Butane and 1,2-Dichloroethane and Their Conformational Equilibria. The Journal of the American Chemical Society 103 4393-4399. 1981 American Chemical Society. [Pg.19]

Quite naturally there is a certain amount of arbitrariness in this system, although the lUPAC nomenclature is followed. The preferred Chemical Abstracts index names for chemical substances have been, with very few exceptions, continued unchanged (since 1972) as set forth in the Ninth Collective Index Guide and in a journal article. Any revisions appear in the updated Index Guide new editions appear at 18-month intervals. Appendix VI is of particular interest to chemists. Reprints of the Appendix may be purchased from Chemical Abstracts Service, Marketing Division, P.O. Box 3012, Columbus, Ohio 43210. [Pg.50]

Reprinted with permission from Wachtel etal. Oil and Gas Journal, 1972 Pennwell. Figure 2.3.1 The ARCO reactor. [Pg.43]

Figure 2.6 Gas cluotnatograni of a 10 ml test sample containing C I4 C26 alkanes in -hexane (about 1 ppb each) the earner gas (H2) inlet pressure was 2.5 bar for a 22 m X 0.32 mm id separation column coupled with a 2 m X 0.32 mm id uncoated precolumn (no vapour exit). Reprinted from Journal of High Resolution Chromatography, 9, K. Grob et al., Concunent solvent evaporation for on-line coupled HPLC-HRGC , pp. 95-101, 1986, with peimission from Wiley-VCH. Figure 2.6 Gas cluotnatograni of a 10 ml test sample containing C I4 C26 alkanes in -hexane (about 1 ppb each) the earner gas (H2) inlet pressure was 2.5 bar for a 22 m X 0.32 mm id separation column coupled with a 2 m X 0.32 mm id uncoated precolumn (no vapour exit). Reprinted from Journal of High Resolution Chromatography, 9, K. Grob et al., Concunent solvent evaporation for on-line coupled HPLC-HRGC , pp. 95-101, 1986, with peimission from Wiley-VCH.
Figure 2.7 Gas clnomatogram obtained for 500 jl1 of diluted gasoline in -pentane inti O-duced by concunent eluent evaporation, using w-heptane as the co-solvent. Reprinted from Journal of High Resolution Chromatography, 11, K. Grob and E. Muller, Co-solvent effects for preventing broadening or loss of early eluted peaks when using concunent eluent evaporation in capillary GC. Part 2 w-heptane in w-pentane as an example , pp. 560-565, 1988, with permission from Wiley-VCH. Figure 2.7 Gas clnomatogram obtained for 500 jl1 of diluted gasoline in -pentane inti O-duced by concunent eluent evaporation, using w-heptane as the co-solvent. Reprinted from Journal of High Resolution Chromatography, 11, K. Grob and E. Muller, Co-solvent effects for preventing broadening or loss of early eluted peaks when using concunent eluent evaporation in capillary GC. Part 2 w-heptane in w-pentane as an example , pp. 560-565, 1988, with permission from Wiley-VCH.
Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science. Figure 2.12 Schematic representation of an on-line SPE-GC system consisting of three switching valves (VI-V3), two pumps (a solvent-delivery unit (SDU) pump and a syringe pump) and a GC system equipped with a solvent-vapour exit (SVE), an MS instrument detector, a retention gap, a retaining precolumn and an analytical column. Reprinted from Journal of Chromatography, AIIS, A. J. H. Eouter et al, Analysis of microcontaminants in aqueous samples hy fully automated on-line solid-phase extraction-gas chromatography-mass selective detection , pp. 67-83, copyright 1996, with permission from Elsevier Science.
Figure 2.16 Clirotnatograms of a pentane extract of a water sample containing 200 ppb of a naphtha fraction (a) sample extracted by using a continuous flow system, where a pressurized bottle was employed as the sample-delivery system (b) batch-extracted sample. Reprinted from Journal of Chromatography, A 330, J. Roeraade, Automated monitoring of organic Race components in water. I. Continuous flow exti action together with on-line capillary gas cliro-matography , pp. 263 - 274, copyrigth 1985, with permission from Elsevier Science. Figure 2.16 Clirotnatograms of a pentane extract of a water sample containing 200 ppb of a naphtha fraction (a) sample extracted by using a continuous flow system, where a pressurized bottle was employed as the sample-delivery system (b) batch-extracted sample. Reprinted from Journal of Chromatography, A 330, J. Roeraade, Automated monitoring of organic Race components in water. I. Continuous flow exti action together with on-line capillary gas cliro-matography , pp. 263 - 274, copyrigth 1985, with permission from Elsevier Science.
Figure 2.17 Schematic representation of the set-up used for on-line liquid-liquid exti action coupled with capillary GC when using a membrane phase separator. Reprinted from Journal of High Resdution Chromatography, 13, E. C. Goosens et al., Determination of hexachloro-cyclohexanes in gi ound water by coupled liquid-liquid extraction and capillaiy gas cliro-matography , pp. 438-441, 1990, with permission from Wiley-VCH. Figure 2.17 Schematic representation of the set-up used for on-line liquid-liquid exti action coupled with capillary GC when using a membrane phase separator. Reprinted from Journal of High Resdution Chromatography, 13, E. C. Goosens et al., Determination of hexachloro-cyclohexanes in gi ound water by coupled liquid-liquid extraction and capillaiy gas cliro-matography , pp. 438-441, 1990, with permission from Wiley-VCH.
Figure 2.20 Schematic representation of the set-up used for on-line exti action-GC VI and V2, valves PI and P2, syringe pumps L, sample loop CC flow, countercunent flow CT, cold ti ap. Reprinted from Journal of High Resolution Chromatography, 16, H. G. J. Mol et ai, Use of open-tubular tapping columns for on-line exti action-capillary gas cluomatography of aqueous samples , pp. 413-418, 1993, with permission from Wiley-VCH. Figure 2.20 Schematic representation of the set-up used for on-line exti action-GC VI and V2, valves PI and P2, syringe pumps L, sample loop CC flow, countercunent flow CT, cold ti ap. Reprinted from Journal of High Resolution Chromatography, 16, H. G. J. Mol et ai, Use of open-tubular tapping columns for on-line exti action-capillary gas cluomatography of aqueous samples , pp. 413-418, 1993, with permission from Wiley-VCH.
Figure 5.2 Schematic representation of the final column-switching system (a) foi ward-flush position (b) back-flush position (further details are given in the text). Reprinted from Journal of Chromatography, A 828, A. K. Sakhi et al. Quantitative determination of endogenous retinoids in mouse embiyos by high-performance liquid cliromatography with on-line solid-phase exti action, column switcliing and electi ochemical detection , pp. 451 -460, copyright 1998, with permission from Elsevier Science. Figure 5.2 Schematic representation of the final column-switching system (a) foi ward-flush position (b) back-flush position (further details are given in the text). Reprinted from Journal of Chromatography, A 828, A. K. Sakhi et al. Quantitative determination of endogenous retinoids in mouse embiyos by high-performance liquid cliromatography with on-line solid-phase exti action, column switcliing and electi ochemical detection , pp. 451 -460, copyright 1998, with permission from Elsevier Science.
Figure 5.3 Analysis of 100 ml of (a) surface water and (b) drinking water sample spiked with 0.1 pig/ml of microcystins, using column-switching HPLC 1, microcystin-RR 2, microcystin-YR 3, microcystin-LR. Reprinted from Journal of Chromatography A, 848, H. S. Lee et al, On-line trace enrichment for the simultaneous determination of microcystins in aqueous samples using high performance liquid chromatography with diode-array detection , pp 179-184, copyright 1999, with permission from Elsevier Science. Figure 5.3 Analysis of 100 ml of (a) surface water and (b) drinking water sample spiked with 0.1 pig/ml of microcystins, using column-switching HPLC 1, microcystin-RR 2, microcystin-YR 3, microcystin-LR. Reprinted from Journal of Chromatography A, 848, H. S. Lee et al, On-line trace enrichment for the simultaneous determination of microcystins in aqueous samples using high performance liquid chromatography with diode-array detection , pp 179-184, copyright 1999, with permission from Elsevier Science.
Figure 5.4 Schematic diagrams of a heait-cut valve configuration system. Reprinted from Journal of Chromatography, 602, S. R. Villasenor, Matrix elimination in ion cliromatography by heart-cut column switching techniques , pp. 155-161, copyright 1992, with permission from Elsevier Science. Figure 5.4 Schematic diagrams of a heait-cut valve configuration system. Reprinted from Journal of Chromatography, 602, S. R. Villasenor, Matrix elimination in ion cliromatography by heart-cut column switching techniques , pp. 155-161, copyright 1992, with permission from Elsevier Science.
Figure 9.3 Schematic illustration of the electrophoretic transfer of proteins in the chromatophoresis process. After being eluted from the HPLC column, the proteins were reduced with /3-mercaptoethanol in the protein reaction system (PRS), and then deposited onto the polyacrylamide gradient gel. (PRC, protein reaction cocktail). Reprinted from Journal of Chromatography, 443, W. G. Button et al., Separation of proteins by reversed-phase Mgh-performance liquid cliromatography , pp 363-379, copyright 1988, with permission from Elsevier Science. Figure 9.3 Schematic illustration of the electrophoretic transfer of proteins in the chromatophoresis process. After being eluted from the HPLC column, the proteins were reduced with /3-mercaptoethanol in the protein reaction system (PRS), and then deposited onto the polyacrylamide gradient gel. (PRC, protein reaction cocktail). Reprinted from Journal of Chromatography, 443, W. G. Button et al., Separation of proteins by reversed-phase Mgh-performance liquid cliromatography , pp 363-379, copyright 1988, with permission from Elsevier Science.
Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH. Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH.
Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH. Figure 10.2 MDGC-MS differentiation between the enantiomers of theaspiranes in an aglycone fraction from puiple passion fruit DB5 pre-column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 0.66 ml/min oven temperature, 60-300 °C at 10 °C/min with a final hold of 25 min) permethylated /3-cyclodextrin column (25 m X 0.25 mm i.d., 0.25 p.m film thickness canier gas He, 1.96 ml/min 80 °C isothermal for 20 min and then programmed to 220 °C at 2 °C/min). Reprinted from Journal of High Resolution Chromatography, 16, G. Full et al., MDGC- MS a powerful tool for enantioselective flavor analysis , pp. 642-644, 1993, with permission from Wiley-VCH.
Figure 10.4 Schematic representation of the multidimensional GC-IRMS system developed by Nitz et al. (27) PRl and PR2, pressure regulators SV1-SV4, solenoid valves NV— and NV-I-, needle valves FID1-FID3, flame-ionization detectors. Reprinted from Journal of High Resolution Chromatography, 15, S. Nitz et al, Multidimensional gas cliro-matography-isotope ratio mass specti ometiy, (MDGC-IRMS). Pait A system description and teclinical requirements , pp. 387-391, 1992, with permission from Wiley-VCFI. Figure 10.4 Schematic representation of the multidimensional GC-IRMS system developed by Nitz et al. (27) PRl and PR2, pressure regulators SV1-SV4, solenoid valves NV— and NV-I-, needle valves FID1-FID3, flame-ionization detectors. Reprinted from Journal of High Resolution Chromatography, 15, S. Nitz et al, Multidimensional gas cliro-matography-isotope ratio mass specti ometiy, (MDGC-IRMS). Pait A system description and teclinical requirements , pp. 387-391, 1992, with permission from Wiley-VCFI.
Reprinted from Journal of High Resolution Chromatography, 15, S. Nitz et ah, Multidimensional gas chi omatography-isotype ratio mass spectrometry (MDGC-IRMS). Part A system description and technical requirements, pp. 387-391, 1992, with peraiission from Wiley-VCH. [Pg.228]

Figure 10.13 GC clrromatogram obtained after on-line LC-GC(ECD) of a human milk sample analysed for PCBs (attenuation X 64). Peak identification is as follows (1) PCB 28 (2) PCB 118 (3) PCB 153 (4) PCB 138 (5) PCB 180 (6) PCB 170 (7) PCB 207. Reprinted from Journal of High Resolution Chromatography, 20, G. R. van der Hoff et al, Determination of organochlorine compounds in fatty matiices application of normal-phase LC clean-up coupled on-line to GC/ECD , pp. 222-226, 1997, with permission from Wiley-VCH. Figure 10.13 GC clrromatogram obtained after on-line LC-GC(ECD) of a human milk sample analysed for PCBs (attenuation X 64). Peak identification is as follows (1) PCB 28 (2) PCB 118 (3) PCB 153 (4) PCB 138 (5) PCB 180 (6) PCB 170 (7) PCB 207. Reprinted from Journal of High Resolution Chromatography, 20, G. R. van der Hoff et al, Determination of organochlorine compounds in fatty matiices application of normal-phase LC clean-up coupled on-line to GC/ECD , pp. 222-226, 1997, with permission from Wiley-VCH.

See other pages where Journals reprints is mentioned: [Pg.411]    [Pg.289]    [Pg.411]    [Pg.289]    [Pg.20]    [Pg.20]    [Pg.20]    [Pg.538]    [Pg.21]    [Pg.23]    [Pg.30]    [Pg.34]    [Pg.35]    [Pg.36]    [Pg.39]    [Pg.227]    [Pg.233]    [Pg.236]    [Pg.239]   
See also in sourсe #XX -- [ Pg.750 ]




SEARCH



© 2024 chempedia.info