Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

ITIES applications

Gasteiger, J., Hutchings, M. G. Quantification of effective polarisabil-ity. Applications to studies of X-ray photoelectron spectroscopy and alkylamine protonation. J. Chem. Soc. Perkin. 1984, 2, 559—564. [Pg.223]

For example, a combination of processes (1) and (2) in Table I could be combined to yield a more specific composition in the final extract. Unit process 1 if conducted by sequentially increasing the extraction density when coupled with a sequence of let down pressures (unit process 2) can anqilify the SFF effect. Likewise, by combining unit process 1 using SC-CX>2 followed Ity application of unit process 2 utilizing sidxritical H2O to deterpenate the extract from unit process 1, can yield a more specific final product from the starting citrus oil. To obtain a mote enriched and/or concentrated product fiom the latter process, one could add on unit process 6, a supercritical fluid membrane-based separation of the aqueous extiact/finctions firom unit process S as indicated below (Table I). [Pg.106]

The 4-, 7-, and 9-mono-, 4,9- and 7,9-di-, and 7,8,9-tri-O-acetates of N-acetylneuraminic acid and partially acetylated derivatives of 1,6-anhydro- -lactose have been prepared Ity application of standard protection - deprotection techniques. [Pg.85]

A typical management accountant s statement for changes in working capital and sources and applications of funds is shown in Table 9-34. This is based on the following relation an increase in apphcation of funds equals an increase in sources of funds. The relation can also be expressed as follows an increase in assets plus a decrease in habil-ities equals an increase in liabilities plus a decrease in assets. [Pg.852]

Two techniques, electrochemical reduction (section IIl-C) and Clem-mensen reduction (section ITI-D), have previously been recommended for the direct reduction of isolated ketones to hydrocarbons. Since the applicability of these methods is limited to compounds which can withstand strongly acidic reaction conditions or to cases where isotope scrambling is not a problem, it is desirable to provide milder alternative procedures. Two of the methods discussed in this section, desulfurization of mercaptal derivatives with deuterated Raney nickel (section IV-A) and metal deuteride reduction of tosylhydrazone derivatives (section IV-B), permit the replacement of a carbonyl oxygen by deuterium under neutral or alkaline conditions. [Pg.171]

The above described reaction has been extended to the application of the AlMe-BINOL catalyst to reactions of acyclic nitrones. A series chiral AlMe-3,3 -diaryl-BINOL complexes llb-f was investigated as catalysts for the 1,3-dipolar cycloaddition reaction between the cyclic nitrone 14a and ethyl vinyl ether 8a [34], Surprisingly, these catalysts were not sufficiently selective for the reactions of cyclic nitrones with ethyl vinyl ether. Use of the tetramethoxy-substituted derivative llg as the catalyst for the reaction significantly improved the results (Scheme 6.14). In the presence of 10 mol% llg the reaction proceeded in a mixture of CH2CI2 and petroleum ether to give the product 15a in 79% isolated yield. The diastereoselectiv-ity was the same as in the acyclic case giving an excellent ratio of exo-15a and endo-15a of >95 <5, and exo-15a was obtained with up to 82% ee. [Pg.222]

The type of CSPs used have to fulfil the same requirements (resistance, loadabil-ity) as do classical chiral HPLC separations at preparative level [99], although different particle size silica supports are sometimes needed [10]. Again, to date the polysaccharide-derived CSPs have been the most studied in SMB systems, and a large number of racemic compounds have been successfully resolved in this way [95-98, 100-108]. Nevertheless, some applications can also be found with CSPs derived from polyacrylamides [11], Pirkle-type chiral selectors [10] and cyclodextrin derivatives [109]. A system to evaporate the collected fractions and to recover and recycle solvent is sometimes coupled to the SMB. In this context the application of the technique to gas can be advantageous in some cases because this part of the process can be omitted [109]. [Pg.8]

Never use cast iron fittings or pipe in process situations unless there is only grav ity pressure head (or not over 10 psig) or the fluid is nonhazardous. One exception is in some concentrated sulfuric acid applications however, extreme caution must be used in the design of the safety of the system area. Never use in pulsing or shock service. [Pg.67]

Fortunately the microinterfaces between two immiscible electrolytes seem to be a very useful experimental model of small liquid-liquid systems. The formation and investigation of the micro-ITIES is continuously perfected [74-76]. The smallest diameter so far achieved was 5 jiva. The main utilization of micro-ITIES is developed, in parallel with application of ultramicroelectrodes. [Pg.36]

To extend the applicability of the SECM feedback mode for studying ET processes at ITIES, we have formulated a numerical model that fully treats diffusional mass transfer in the two phases [49]. The model relates to the specific case of an irreversible ET process at the ITIES, i.e., the situation where the potentials of the redox couples in the two phases are widely separated. A further model for the case of quasireversible ET kinetics at the ITIES is currently under development. For the case where the oxidized form of a redox species, Oxi, is electrolytically generated at the tip in phase 1 from the reduced species, Red], the reactions at the tip and the ITIES are ... [Pg.298]

The ITIES with an adsorbed monolayer of surfactant has been studied as a model system of the interface between microphases in a bicontinuous microemulsion [39]. This latter system has important applications in electrochemical synthesis and catalysis [88-92]. Quantitative measurements of the kinetics of electrochemical processes in microemulsions are difficult to perform directly, due to uncertainties in the area over which the organic and aqueous reactants contact. The SECM feedback mode allowed the rate of catalytic reduction of tra 5-l,2-dibromocyclohexane in benzonitrile by the Co(I) form of vitamin B12, generated electrochemically in an aqueous phase to be measured as a function of interfacial potential drop and adsorbed surfactants [39]. It was found that the reaction at the ITIES could not be interpreted as a simple second-order process. In the absence of surfactant at the ITIES the overall rate of the interfacial reaction was virtually independent of the potential drop across the interface and a similar rate constant was obtained when a cationic surfactant (didodecyldimethylammonium bromide) was adsorbed at the ITIES. In contrast a threefold decrease in the rate constant was observed when an anionic surfactant (dihexadecyl phosphate) was used. [Pg.321]

In this chapter, we describe some of the more widely used and successful kinetic techniques involving controlled hydrodynamics. We briefly discuss the nature of mass transport associated with each method, and assess the attributes and drawbacks. While the application of hydrodynamic methods to liquid liquid interfaces has largely involved the study of spontaneous processes, several of these methods can be used to investigate electrochemical processes at polarized ITIES we consider these applications when appropriate. We aim to provide an historical overview of the field, but since some of the older techniques have been reviewed extensively [2,3,13], we emphasize the most recent developments and applications. [Pg.333]

The electrolyte dropping electrode has found particular application in the study of ion transfer at the polarized ITIES, with an emphasis on analysis. A range of species have been detected amperometrically by measuring the transport-limited current ... [Pg.347]

MEMED has also been used to investigate the nature of coupled ion-transfer processes involved in spontaneous electron transfer at ITIES [80]. In this application, a key strength of MEMED is that all of the reactants and products involved in the reaction can be measured, as shown in Figs. 19 and 20. The redox reaction studied involved the oxidation of either ferrocene (Fc) or decamethylferrocene (DMFc) in a DCE phase (denoted by Fcdce) by either IrCle or Fe(CN)g in the aqueous phase (denoted by Ox ) ... [Pg.352]

In this chapter our focus is on principles, theory, and applications of micro-ITIES to quantitative voltammetric measurements of CT processes and ionic reactions in solution. The questions of characterization of the interfacial geometry and surrounding insulator, which are essential for both kinetic measurements and analytical applications of micro-ITIES, will also be discussed. [Pg.380]

Unlike solid electrodes, the shape of the ITIES can be varied by application of an external pressure to the pipette. The shape of the meniscus formed at the pipette tip was studied in situ by video microscopy under controlled pressure [19]. When a negative pressure was applied, the ITIES shape was concave. As expected from the theory [25a], the diffusion current to a recessed ITIES was lower than in absence of negative external pressure. When a positive pressure was applied to the pipette, the solution meniscus became convex, and the diffusion current increased. The diffusion-limiting current increased with increasing height of the spherical segment (up to the complete sphere), as the theory predicts [25b]. Importantly, with no external pressure applied to the pipette, the micro-ITIES was found to be essentially flat. This observation was corroborated by numerous experiments performed with different concentrations of dissolved species and different pipette radii [19]. The measured diffusion current to such an interface agrees quantitatively with Eq. (6) if the outer pipette wall is silanized (see next section). The effective radius of a pipette can be calculated from Eq. (6) and compared to the value found microscopically [19]. [Pg.387]

The structure of the interface between two immiscible electrolyte solutions (ITIES) has been the matter of considerable interest since the beginning of the last century [1], Typically, such a system consists of water (w) and an organic solvent (o) immiscible with it, each containing an electrolyte. Much information about the ITIES has been gained by application of techniques that involve measurements of the macroscopic properties, such as surface tension or differential capacity. The analysis of these properties in terms of various microscopic models has allowed us to draw some conclusions about the distribution and orientation of ions and neutral molecules at the ITIES. The purpose of the present chapter is to summarize the key results in this field. [Pg.419]

Various types of research are carried out on ITIESs nowadays. These studies are modeled on electrochemical techniques, theories, and systems. Studies of ion transfer across ITIESs are especially interesting and important because these are the only studies on ITIESs. Many complex ion transfers assisted by some chemical reactions have been studied, to say nothing of single ion transfers. In the world of nature, many types of ion transfer play important roles such as selective ion transfer through biological membranes. Therefore, there are quite a few studies that get ideas from those systems, while many interests from analytical applications motivate those too. Since the ion transfer at an ITIES is closely related with the fields of solvent extraction and ion-selective electrodes, these studies mainly deal with facilitated ion transfer by various kinds of ionophores. Since crown ethers as ionophores show interesting selectivity, a lot of derivatives are synthesized and their selectivities are evaluated in solvent extraction, ion-selective systems, etc. Of course electrochemical studies on ITIESs are also suitable for the systems of ion transfer facilitated by crown ethers and have thrown new light on the mechanisms of selectivity exhibited by crown ethers. [Pg.629]

The above-mentioned important and impressive applications of titanocene mediated and catalyzed epoxide opening have been achieved by using the already classical 5-exo, 6-exo and 6-endo cyclizations with alkenes or alkynes as radical acceptors. Besides these achievements, the high chemoselectiv-ity of radical generation and slow reduction of the intermediate radicals by Cp2TiCl has resulted in some remarkable novel methodology. [Pg.55]

Unfortunately, despite the novelty of the above approaches none of the sensors has stood the test of time, mostly due to various practical difficulties and/or poor sensitiv-ity/selectivity. Furthermore, the lack of any published data describing the use of these sensors in any biological research applications limits any conclusion that can be made on their individual performance. [Pg.31]


See other pages where ITIES applications is mentioned: [Pg.910]    [Pg.910]    [Pg.14]    [Pg.1138]    [Pg.1605]    [Pg.763]    [Pg.217]    [Pg.160]    [Pg.1]    [Pg.79]    [Pg.24]    [Pg.25]    [Pg.151]    [Pg.74]    [Pg.694]    [Pg.707]    [Pg.153]    [Pg.233]    [Pg.317]    [Pg.328]    [Pg.353]    [Pg.379]    [Pg.379]    [Pg.391]    [Pg.757]    [Pg.140]    [Pg.329]    [Pg.39]    [Pg.163]    [Pg.184]   


SEARCH



ITIES

Itis

© 2024 chempedia.info