Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micro-ITIES

Voltammetry at Micro-ITIES Biao Liu and Michael V. Mirkin... [Pg.12]

Fortunately the microinterfaces between two immiscible electrolytes seem to be a very useful experimental model of small liquid-liquid systems. The formation and investigation of the micro-ITIES is continuously perfected [74-76]. The smallest diameter so far achieved was 5 jiva. The main utilization of micro-ITIES is developed, in parallel with application of ultramicroelectrodes. [Pg.36]

In this chapter our focus is on principles, theory, and applications of micro-ITIES to quantitative voltammetric measurements of CT processes and ionic reactions in solution. The questions of characterization of the interfacial geometry and surrounding insulator, which are essential for both kinetic measurements and analytical applications of micro-ITIES, will also be discussed. [Pg.380]

Most electrochemical studies at the micro-ITIES were focused on ion transfer processes. Simple ion transfer reactions at the micropipette are characterized by an asymmetrical diffusion field. The transfer of ions out of the pipette (ejection) is controlled by essentially linear diffusion inside its narrow shaft, whereas the transfer into the pipette (injection) produces a spherical diffusion field in the external solution. In contrast, the diffusion field at a microhole-supported ITIES is approximately symmetrical. Thus, the theoretical descriptions for these two types of micro-ITIES are somewhat different. [Pg.380]

In a typical voltammetric experiment, a constant voltage or a slow potential sweep is applied across the ITIES formed in a micrometer-size orifice. If this voltage is sufficiently large to drive some IT (or ET) reaction, a steady-state current response can be observed (Fig. 1) [12]. The diffusion-limited current to a micro-ITIES surrounded by a thick insulating sheath is equivalent to that at an inlaid microdisk electrode, i.e.,... [Pg.380]

No steady-state theory for kinetically controlled heterogeneous IT has been developed for micropipettes. However, for a thin-wall pipette (e.g., RG < 2) the micro-ITIES is essentially uniformly accessible. When CT occurs via a one-step first-order heterogeneous reaction governed by Butler-Volmer equation, the steady-state voltammetric response can be calculated as [8a]... [Pg.384]

III. CHARACTERIZATION AND SURFACE TREATMENT OF PIPETTES A. Characterization of Micro-iTiES... [Pg.387]

Unlike solid electrodes, the shape of the ITIES can be varied by application of an external pressure to the pipette. The shape of the meniscus formed at the pipette tip was studied in situ by video microscopy under controlled pressure [19]. When a negative pressure was applied, the ITIES shape was concave. As expected from the theory [25a], the diffusion current to a recessed ITIES was lower than in absence of negative external pressure. When a positive pressure was applied to the pipette, the solution meniscus became convex, and the diffusion current increased. The diffusion-limiting current increased with increasing height of the spherical segment (up to the complete sphere), as the theory predicts [25b]. Importantly, with no external pressure applied to the pipette, the micro-ITIES was found to be essentially flat. This observation was corroborated by numerous experiments performed with different concentrations of dissolved species and different pipette radii [19]. The measured diffusion current to such an interface agrees quantitatively with Eq. (6) if the outer pipette wall is silanized (see next section). The effective radius of a pipette can be calculated from Eq. (6) and compared to the value found microscopically [19]. [Pg.387]

Girault et al. employed steady-state voltammetry and impedance spectroscopy to study the kinetics of simple IT (e.g., transfer of TMA from water to DCE) and facilitated transfer of potassium by DB18C6 at micro-ITIES [18b, 24]. In both cases, the standard... [Pg.391]

Studies of electron transfer (ET) at micro-ITIES are scarce. Solomon and Bard first observed the ET between TCNQ (in DCE) and ferrocyanide (in water) at a micro-ITIES supported by micropipettes [5]. The pipette was used as a SECM probe for electrochemical imaging. The current was controlled by the rate of the bimolecular ET reaction at the micro-ITIES... [Pg.396]

Quinn et al. studied ET at micro-ITIES supported by micropipettes or microholes [16]. The studied systems involved ferri/ferrocyanide redox couple in aqueous phase and ferrocene, dimethylferrocene, or TCNQ in either DCE or o-nitrophenyl octyl ether. Sigmoidal, steady-state voltammograms were obtained for ET at the water-DCE interface supported at a micropipette. The semilogarithmic plot of E versus log[(/(j — /)//] was... [Pg.396]

The voltammograms at the microhole-supported ITIES were analyzed using the Tomes criterion [34], which predicts ii3/4 — iii/4l = 56.4/n mV (where n is the number of electrons transferred and E- i and 1/4 refer to the three-quarter and one-quarter potentials, respectively) for a reversible ET reaction. An attempt was made to use the deviations from the reversible behavior to estimate kinetic parameters using the method previously developed for UMEs [21,27]. However, the shape of measured voltammograms was imperfect, and the slope of the semilogarithmic plot observed was much lower than expected from the theory. It was concluded that voltammetry at micro-ITIES is not suitable for ET kinetic measurements because of insufficient accuracy and repeatability [16]. Those experiments may have been affected by reactions involving the supporting electrolytes, ion transfers, and interfacial precipitation. It is also possible that the data was at variance with the Butler-Volmer model because the overall reaction rate was only weakly potential-dependent [35] and/or limited by the precursor complex formation at the interface [33b]. [Pg.397]

According to Eq. (1) the steady-state current across a micro-ITIES is proportional to the bulk concentration of the transferred species. Thus, the micro-ITIES can function as an amperometric ion-selective sensor. Similarly, the peak current in a linear sweep voltam-mogram of ion egress from the micropipette obeys the Randles-Sevcik equation. Both types of measurements can be useful for analysis of small samples [18a]. [Pg.399]

A composite polymer membrane has also been used as an effective amperometric detector for ion exchange chromatography [42] and showed detection limits similar to those obtained with a conductivity detector. An advantage of the amperometric detector based on micro-ITIES over the conductometric detector is that selectively can be tailored by proper choice of the ionophore. For instance, the selectivity of the membrane toward ammonium in the presence of an excess of sodium could be substantially increased by introducing an ammonium-selective ionophore (such as valinomycin) in the gel membrane [42]. [Pg.401]

In the last 30 years, the manufacturing and use of micrometer- and nanometer-sized electrochemical interfaces, microelectrodes, and micro-ITIES have been widely extended. The main advantages associated with the reduction of the size of the interface are the fast achievement of a time-independent current-potential response (independent of the electrochemical technique employed), the decrease of the ohmic drop, the improvement of the ratio of faradaic to charge current, and the enhancement of the mass transport. Their small size has played an important role in... [Pg.369]

The first micro-ITIES were introduced in 1986, using a glass micropipette which was pulled down to a fine tip of around 25 pm to support the interface [66-71]. The smaller size of micropipettes or microcapillaries is advantageous for sensor applications, providing the possibility of studying microenvironments as living cells, and it can also be used as a probe in scanning electrochemical microscopy (SECM) [72]. [Pg.370]

In summary, although the construction of micro-ITIES is, in general, simpler than that of microelectrodes, their mathematical treatment is always more complicated for two reasons. First, in micro-ITIES the participating species always move from one phase to the other, while in microelecrodes they remain in the same phase. This leads to complications because in the case of micro-ITIES the diffusion coefficients in both phases are different, which complicates the solution when nonlinear diffusion is considered. Second, the diffusion fields of a microelectrode are identical for oxidized and reduced species, while in micro-ITIES the diffusion fields for the ions in the aqueous and organic phases are not usually symmetrical. Moreover, as a stationary response requires fDt / o (where D is the diffusion coefficient, r0 is the critical dimension of the microinterface, and t is the experiment time), even in L/L interfaces with symmetrical diffusion field it may occur that the stationary state has been reached in one phase (aqueous) and not in the other (organic) at a given time, so a transient behavior must be considered. [Pg.372]

In most conventional electrochemical studies carried out at either macro- or micro-ITIES, the same interface area was available for both ET and IT processes. In contrast, the ET process in SECM experiments occurs at a micrometer-size area of the ITIES confronting the tip, while charge-compensating IT can occur at any point on the large (on the order of cm2) phase boundary. Thus, the interfacial ET can be probed without complications caused by IT. This assumption was checked for the ET between Ru(III)-2,2 -bipyridine (Ru(bpy)3+) and ferrocene (Fc) in NB ... [Pg.304]


See other pages where Micro-ITIES is mentioned: [Pg.379]    [Pg.379]    [Pg.379]    [Pg.379]    [Pg.391]    [Pg.393]    [Pg.396]    [Pg.399]    [Pg.401]    [Pg.317]    [Pg.369]    [Pg.372]    [Pg.463]    [Pg.503]    [Pg.687]    [Pg.688]    [Pg.104]    [Pg.373]    [Pg.373]    [Pg.373]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.381]   
See also in sourсe #XX -- [ Pg.369 , Pg.370 , Pg.371 , Pg.503 , Pg.504 , Pg.505 , Pg.506 ]

See also in sourсe #XX -- [ Pg.55 ]




SEARCH



ITIES

Itis

© 2024 chempedia.info