Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Subject isomerization

Anilines react with ct-haloacetophenones to give 2-arylindoles. In a typical procedure an W-phenacylaniline is heated with a tw o-fold excess of the aniline hydrobromide to 200-250°C[1]. The mechanism of the reaction was the subject of considerable investigation in the 1940s[2]. A crucial aspect of the reaction seems to be the formation of an imine of the acetophenone which can isomerize to an aldimine intermediate. This intermediate apparently undergoes cyclization more rapidly (path bl -> b2) than its precursor (Scheme 7.3). Only with very reactive rings, e.g, 3,5-dimethoxyaniline, has the alternative cydiz-ation (path al a2) to a 3-arylindole been observed and then only under modified reaction conditions[3],... [Pg.77]

In a search for fluorocarbons having anesthetic properties 1 2 dichloro 1 1 difluoropropane was subjected to photochemical chlorination Two isomeric products were obtained one of which was identified as 1 2 3 tnchloro 1 1 difluoropropane What is the structure of the second com pound" ... [Pg.185]

Addition of phenylmagnesium bromide to 4 tert butylcyclohexanone gives two isomeric ter tiary alcohols as products Both alcohols yield the same alkene when subjected to acid catalyzed dehydration Suggest reasonable structures for these two alcohols... [Pg.620]

Step 3 Once formed the thiazolone derivative isomerizes to a more stable phenylthiohydantom (PTH) derivative which IS isolated and characterized thereby providing identification of the N terminal ammo acid The remainder of the peptide (formed m step 2) can be isolated and subjected to a second Edman degradation... [Pg.1134]

It is not the purpose of this book to discuss in detail the contributions of NMR spectroscopy to the determination of molecular structure. This is a specialized field in itself and a great deal has been written on the subject. In this section we shall consider only the application of NMR to the elucidation of stereoregularity in polymers. Numerous other applications of this powerful technique have also been made in polymer chemistry, including the study of positional and geometrical isomerism (Sec. 1.6), copolymers (Sec. 7.7), and helix-coil transitions (Sec. 1.11). We shall also make no attempt to compare the NMR spectra of various different polymers instead, we shall examine only the NMR spectra of different poly (methyl methacrylate) preparations to illustrate the capabilities of the method, using the first system that was investigated by this technique as the example. [Pg.482]

The conformational characteristics of PVF are the subject of several studies (53,65). The rotational isomeric state (RIS) model has been used to calculate mean square end-to-end distance, dipole moments, and conformational entropies. C-nmr chemical shifts are in agreement with these predictions (66). The stiffness parameter (5) has been calculated (67) using the relationship between chain stiffness and cross-sectional area (68). In comparison to polyethylene, PVF has greater chain stiffness which decreases melting entropy, ie, (AS ) = 8.58 J/(molK) [2.05 cal/(molK)] versus... [Pg.380]

Analytical and Test Methods. o-Nitrotoluene can be analyzed for purity and isomer content by infrared spectroscopy with an accuracy of about 1%. -Nitrotoluene content can be estimated by the decomposition of the isomeric toluene diazonium chlorides because the ortho and meta isomers decompose more readily than the para isomer. A colorimetric method for determining the content of the various isomers is based on the color which forms when the mononitrotoluenes are dissolved in sulfuric acid (45). From the absorption of the sulfuric acid solution at 436 and 305 nm, the ortho and para isomer content can be deterrnined, and the meta isomer can be obtained by difference. However, this and other colorimetric methods are subject to possible interferences from other aromatic nitro compounds. A titrimetric method, based on the reduction of the nitro group with titanium(III) sulfate or chloride, can be used to determine mononitrotoluenes (32). Chromatographic methods, eg, gas chromatography or high pressure Hquid chromatography, are well suited for the deterrnination of mononitrotoluenes as well as its individual isomers. Freezing points are used commonly as indicators of purity of the various isomers. [Pg.70]

Replacing one carbon atom of naphthalene with an a2omethene linkage creates the isomeric heterocycles 1- and 2-a2anaphthalene. Better known by their trivial names quinoline [91-22-5] (1) and isoquinoline [119-65-3] (2), these compounds have been the subject of extensive investigation since their extraction from coal tar in the nineteenth century. The variety of studies cover fields as diverse as molecular orbital theory and corrosion prevention. There is also a vast patent Hterature. The best assurance of continuing interest is the frequency with which quinoline and isoquinoline stmctures occur in alkaloids (qv) and pharmaceuticals (qv), for example, quinine [130-95-0] and morphine [57-27-2] (see Alkaloids). [Pg.388]

Thermal isomerization of a-pinene, usually at about 450°C, gives a mixture of equal amounts of dipentene (15) and aHoocimene (16) (49,50). Ocimene (17) is produced initially but is unstable and rearranges to aHoocimene, which is subject to cyclization at higher temperatures to produce a- and P-pyronenes (18 and 19). The pyrolysis conditions are usually optimized to give the maximum amount of aHoocimene. Ocimenes can be produced by a technique using shorter contact time and rapid quenching or steam dilution (51). [Pg.412]

Uses ndReactions. Linalool can be estetified to linalyl acetate by reaction with acetic anhydride. Linalyl acetate [115-95-7] has a floral-fmity odor, reminiscent of bergamot and lavender. The price of the acetate in 1995 was 14.30/kg (45). Linalool is subject to dehydration and to isomerization to nerol and geraniol during the esterification. However, if the acetic acid formed during the esterification is removed in a distillation column, the isomerization can be minimized and good yields of the acetate obtained (130). [Pg.421]

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

Indazoles have been subjected to certain theoretical calculations. Kamiya (70BCJ3344) has used the semiempirical Pariser-Parr-Pople method with configuration interaction for calculation of the electronic spectrum, ionization energy, tt-electron distribution and total 7T-energy of indazole (36) and isoindazole (37). The tt-densities and bond orders are collected in Figure 5 the molecular diagrams for the lowest (77,77 ) singlet and (77,77 ) triplet states have also been calculated they show that the isomerization (36) -> (37) is easier in the excited state. [Pg.175]

There are at least two mechanisms available for aziridine cis-trans isomerism. The first is base-catalyzed and proceeds via an intermediate carbanion (235). The second mechanism can be either thermally or photochemically initiated and proceeds by way of an intermediate azomethine ylide. The absence of a catalytic effect and interception of the 1,3-dipole intermediate provide support for this route. A variety of aziridinyl ketones have been found to undergo equilibration when subjected to base-catalyzed conditions (65JA1050). In most of these cases the cis isomer is more stable than the trans. Base-catalyzed isotope exchange has also been observed in at least one molecule which lacks a stabilizing carbonyl group (72TL3591). [Pg.72]

The reaction of disubstituted diacetylenes with hydrazine hydrate was reported by Darbinyan et al. (70AKZ640). In the first stage the addition of hydrazine to the terminal carbon atom of the diacetylene system is analogous to that of primary amines to diacetylene (69ZC108 69ZC110). With monosubstituted diacetylenes (R = H), hydrazine adds to the terminal triple bond. This leads to the formation of vinylacetylenic hydrazine 22 which cyclizes to dihydropyrazole 23 subjected to further isomerization to the pyrazole 25. It is possible that hydrazine 22 undergoes hydration to the ketone 24 which can easily be cyclized to the pyrazole 25... [Pg.166]

The cycloadducts formed from ethenetetracarbonitrile and the three isomerically pure methyl methyl-1//-azepine-l-carboxylates, 4, 5 and 6, have been subjected to a rigorous structural examination, from which it was concluded that adducts bearing the methyl groups at the bridgehead positions are not formed.251 Thus, the 2-methyl and the 4-methyl isomers, 4 and 5, each yield only one adduct, 7a and 7b, respectively, whereas methyl 3-methyl-1//-azepine-l-car-boxyate (6) gives 66 % yield of a 45 55 mixture of the 4-methyl 7 c and 7-methyl 7 d cycloadducts. [Pg.188]

The reaction scheme is rather complex also in the case of the oxidation of o-xylene (41a, 87a), of the oxidative dehydrogenation of n-butenes over bismuth-molybdenum catalyst (87b), or of ethylbenzene on aluminum oxide catalysts (87c), in the hydrogenolysis of glucose (87d) over Ni-kieselguhr or of n-butane on a nickel on silica catalyst (87e), and in the hydrogenation of succinimide in isopropyl alcohol on Ni-Al2Oa catalyst (87f) or of acetophenone on Rh-Al203 catalyst (87g). Decomposition of n-and sec-butyl acetates on synthetic zeolites accompanied by the isomerization of the formed butenes has also been the subject of a kinetic study (87h). [Pg.24]

Mechanistically these isomerizations have been investigated very little, in contrast to those of azo compounds such as azobenzene and its derivatives. This subject is not... [Pg.147]

Owing to the reversible nature of the allylic sulfenate/allylic sulfoxide interconversion, the stereochemical outcome of both processes is treated below in an integrated manner. However, before beginning the discussion of this subject it is important to point out that although the allylic sulfoxide-sulfenate rearrangement is reversible, and although the sulfenate ester is usually in low equilibrium concentration with the isomeric sulfoxide, desulfurization of the sulfenate by thiophilic interception using various nucleophiles, such as thiophenoxide or secondary amines, removes it from equilibrium, and provides a useful route to allylic alcohols (equation 11). [Pg.724]


See other pages where Subject isomerization is mentioned: [Pg.110]    [Pg.661]    [Pg.398]    [Pg.209]    [Pg.424]    [Pg.242]    [Pg.222]    [Pg.6]    [Pg.198]    [Pg.238]    [Pg.512]    [Pg.398]    [Pg.186]    [Pg.178]    [Pg.161]    [Pg.83]    [Pg.231]    [Pg.42]    [Pg.50]    [Pg.178]    [Pg.12]    [Pg.219]    [Pg.650]    [Pg.2]    [Pg.327]    [Pg.52]    [Pg.256]    [Pg.334]    [Pg.458]    [Pg.1339]    [Pg.101]   
See also in sourсe #XX -- [ Pg.761 ]

See also in sourсe #XX -- [ Pg.501 ]




SEARCH



Subject ionization isomerism

Subject isomerism

Subject isomerism

Subject isomerization problems

Subject olefin isomerization

Subject polymerization isomerism

© 2024 chempedia.info