Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isolation solvent extraction

Although salts containing the anion [PoCNOsj ] " have never been isolated, solvent extraction studies with indicate that anionic nitrate complexes are formed in nitric acid solutions which contain the metal cation. [Pg.3940]

Ultrasonication A method for isolating solvent-extractable components of organic matter from samples of sediment or biota that uses high-frequency sound waves to agitate the sample in an organic solvent. [Pg.490]

Lanthanum was isolated in relatively pure form in 1923. Iron exchange and solvent extraction techniques have led to much easier isolation of the so-called "rare-earth" elements. [Pg.128]

However, the quantity of Pa produced in this manner is much less than the amount (more than 100 g) that has been isolated from the natural source. The methods for the recovery of protactinium include coprecipitation, solvent extraction, ion exchange, and volatility procedures. AH of these, however, are rendered difficult by the extreme tendency of protactinium(V) to form polymeric coUoidal particles composed of ionic species. These caimot be removed from aqueous media by solvent extraction losses may occur by adsorption to containers and protactinium may be adsorbed by any precipitate present. [Pg.213]

The wastes from uranium and plutonium processing of the reactor fuel usually contain the neptunium. Precipitation, solvent extraction, ion exchange, and volatihty procedures (see Diffusion separation methods) can be used to isolate and purify the neptunium. [Pg.213]

Miscellaneous Pharmaceutical Processes. Solvent extraction is used for the preparation of many products that ate either isolated from naturally occurring materials or purified during synthesis. Among these are sulfa dmgs, methaqualone [72-44-6] phenobarbital [50-06-6] antihistamines, cortisone [53-06-5] estrogens and other hormones (qv), and reserpine [50-55-5] and alkaloids (qv). Common solvents for these appHcations are chloroform, isoamyl alcohol, diethyl ether, and methylene chloride. Distribution coefficient data for dmg species are important for the design of solvent extraction procedures. These can be determined with a laboratory continuous extraction system (AKUEVE) (244). [Pg.79]

Acylthiophenes. Manufacturing methods introducing the carboxaldehyde group into the 2- or 5-positions of thiophene and alkylthiophenes utilise the Vilsmeier-Haack reaction. To synthesize 2-thiophenecarboxaldehyde (Table 5), a controlled addition of phosphoms oxychloride to thiophene in /V, /V- dim ethyl form am i de is carried out, causing the temperature to rise. Completion of the reaction is followed by an aqueous quench, neutralization, and solvent extraction to isolate the product. [Pg.21]

Isolation. Isolation procedures rely primarily on solubiHty, adsorption, and ionic characteristics of the P-lactam antibiotic to separate it from the large number of other components present in the fermentation mixture. The penicillins ate monobasic catboxyHc acids which lend themselves to solvent extraction techniques (154). Pencillin V, because of its improved acid stabiHty over other penicillins, can be precipitated dkecdy from broth filtrates by addition of dilute sulfuric acid (154,156). The separation process for cephalosporin C is more complex because the amphoteric nature of cephalosporin C precludes dkect extraction into organic solvents. This antibiotic is isolated through the use of a combination of ion-exchange and precipitation procedures (157). The use of neutral, macroporous resins such as XAD-2 or XAD-4, allows for a more rapid elimination of impurities in the initial steps of the isolation (158). The isolation procedure for cephamycin C also involves a series of ion exchange treatments (103). [Pg.31]

Pharmaceuticals. Pharmaceuticals account for 6% of the Hquid-phase activated carbon consumption (74). Many antibiotics, vitarnins, and steroids are isolated from fermentation broths by adsorption onto carbon foUowed by solvent extraction and distillation (82). Other uses in pharmaceutical production include process water purification and removal of impurities from intravenous solutions prior to packaging (83). [Pg.534]

MICROWAVE-ASSISTED SOLVENT EXTRACTION AND A NEW METHOD FOR ISOLATION OF TOTAL PETROLEUM HYDROCARBONS (TPH) FROM PLANTS WITH COLUMN CHROMATOGRAPHY (SILICA GEL AND ALUMINA) AND DETERMINATION WITH SPECTROFLUOROPHOTOMETRY... [Pg.270]

These acids are less stable, less soluble and less acidic than the corresponding sulfonic acids. The common impurities are the respective sulfonyl chlorides from which they have been prepared, and the thiolsulfonates (neutral) and sulfonic acids into which they decompose. The first two of these can be removed by solvent extraction from an alkaline solution of the acid. On acidification of an alkaline solution, the sulfinic acid crystallises out leaving the sulfonic acid behind. The lower molecular weight members are isolated as their metal (e.g. ferric) salts, but the higher members can be crystallised from water (made slightly acidic), or alcohol. [Pg.62]

In recent years researchers at West Virginia University have developed coal-derived pitches on a laboratory scale in quantities sufficient to make 1 kg samples of calcined coke for fashioning graphite test specimens. The pitches were derived by uhlizmg solvent extraction with N-methyl pyrrohdone (NMP). This solvent is able to isolate coal-based pitches m high yield and with low mineral matter content [13]. It is this work that will form the basis of the discussion for the later part of this chapter. [Pg.206]

A mixture of the ketone (4.62 g), iridium tetrachloride (1.23 g), trimethyl phosphite (15 ml), propan-2-oI (200 ml) and water (50 ml) is heated under reflux for 21 hr. Much of the solvent is then distilled off ca. 215 ml) and the organic products remaining are isolated by extraction with ether. If reduction is essentially complete, the product at this stage may be sufficiently pure for most preparative purposes. Pure components can be obtained by chromatography over alumina, a representative experiment (on the above scale) gives unchanged ketone (0.13 g), cw-alcohol (4.36 g) and tmns-2 co o (0.16 g) (eluted in this order by pentane, and then by pentane containing ether). [Pg.101]

As already noted (p. 1073), the platinum metals are all isolated from concentrates obtained as anode slimes or converter matte. In the classical process, after ruthenium and osmium have been removed, excess oxidants are removed by boiling, iridium is precipitated as (NH4)2lrCl6 and rhodium as [Rh(NH3)5Cl]Cl2. In alternative solvent extraction processes (p. 1147) [IrClg] " is extracted in organic amines leaving rhodium in the aqueous phase to be precipitated, again, as [Rh(NH3)5Cl]Cl2. In all cases ignition in H2... [Pg.1114]

As solvent an alcohol—often ethanol—as well as water or acetic acid can be used. The reaction conditions vary with the substrate various CH-acidic compounds can be employed as starting materials. The Mannich bases formed in the reaction often crystallize from the reaction mixture, or can be isolated by extraction with aqueous hydrochloric acid. [Pg.195]

Although solvent extraction has been used predominantly for the isolation... [Pg.161]

Extraction of the analyte or of the interfering element(s) is an obvious method of overcoming the effect of interferences . It is frequently sufficient to perform a simple solvent extraction to remove the major portion of an interfering substance so that, at the concentration at which it then exists in the solution, the interference becomes negligible. If necessary, repeated solvent extraction will reduce the effect of the interference even further and, equally, a quantitative solvent extraction procedure may be carried out so as to isolate the substance to be determined from interfering substances. [Pg.793]

Primary isolation is done to increase product concentration. Solvent extraction, absorption, precipitation and ultrafiltration are the best known. Ultrafiltration can discriminate at the molecular level. During primary isolation, desired product concentration increases considerably and substances of widely differing polarities are separated from the product. [Pg.171]

The analytical method described is also used in following the consumption of peroxybenzoic acid or other peroxy acids during an oxidation reaction it has also been used in determining the conversion of other carboxylic acids to peroxy acids when solvent extraction has been used in the isolation. [Pg.95]

Bromocriptine 2 (0.65 g, 1 mmol) was dissolved in 100 ml of dry ethanol and 60 ml of tetrafluoroboric acid / diethylether complex (85 %) was added while stirring. After standing overnight at RT the solvent was evaporated and the raw product isolated by extraction in the system dichloromethane 12% ammonia in water and evaporated to the dry residue. This residue was applied to the chromatographic column (I.D. = 2 cm, lenght = 20 cm) packed with silicagel and eluted with dichloromethane / ethylacetate =1 1. The fractions containing 2 were evaporated to the dry residue and crystallized from alcohol. [Pg.88]

Oleosomes of seabuckthom fruit flesh were isolated by physical separation techniques and their higher stabilities and antioxidant activities compared to solvent-extracted oil were demonstrated. ... [Pg.320]

Liquid-liquid extraction (also called solvent extraction) is the transfer of a substance (a consolute) dissolved in one liquid to a second liquid (the solvent) that is immiscible with the first liquid or miscible to a very limited degree. This operation is commonly used in fine chemicals manufacture (I) to wash out impurities from a contaminated solution to a solvent in order to obtain a pure solution (raffinate) from which the pure substance will be isolated, and (2) to pull out a desired substance from a contaminated liquid into the solvent leaving impurities in the first liquid. The former operation is typically employed when an organic phase is to be depleted from impurities which are soluble in acidic, alkaline, or neutral aqueous solutions Water or a diluted aqueous solution is then used as the solvent. The pure raffinate is then appropriately processed (e.g. by distillation) to isolate the desired consolute. In the latter version of extraction impurities remain in the first phase. The extract that has become rich in the desired consolute is then appropriately processed to isolate the consolute. Extraction can also be used to fractionate multiple consolutes. [Pg.252]


See other pages where Isolation solvent extraction is mentioned: [Pg.244]    [Pg.83]    [Pg.244]    [Pg.83]    [Pg.130]    [Pg.154]    [Pg.185]    [Pg.195]    [Pg.53]    [Pg.213]    [Pg.176]    [Pg.127]    [Pg.259]    [Pg.406]    [Pg.235]    [Pg.296]    [Pg.678]    [Pg.1276]    [Pg.675]    [Pg.12]    [Pg.182]    [Pg.268]    [Pg.206]    [Pg.186]    [Pg.157]    [Pg.351]    [Pg.130]    [Pg.154]    [Pg.61]   
See also in sourсe #XX -- [ Pg.413 , Pg.416 ]




SEARCH



Solvent isolate

© 2024 chempedia.info