Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron zeolite catalysts

Catalytic Evaluation In order to investigate support effects in these iron/zeolite catalysts prepared from Fe3(C0)12 by the extraction technique, three catalysts of similar weight percent iron loading were evaluated for their ability to catalyze synthesis gas conversion these catalysts were 15.0% Fe/ZSM-5, 16.4% Fe/Mordenite andl5.0% Fe/13X. All catalysts were evaluated under similar conditions as described in the experimental section. Catalytic data is presented in the accompanying figures in each figure the first three points for each catalyst are data obtained at 280°C, the second three points are data at 300°C. [Pg.400]

Structure-Sensitive Reactions of Cyclopropane with Cobalt and Iron Zeolite Catalysts... [Pg.569]

Iron-zeolite catalysts present an important type of materials with broad application for selective oxidations (i.e. benzene hydroxylation) and environmentally important processes, like SCR reduction of NOx or N2O decomposition. In the case of SCR reaction they could provide a convenient substitution of the vanadia-based system using environmentally problematic ammonia, by more convenient paraffin as a reducing agent. Unfortunately, the efficiency in utilization of paraffin is inferior in comparison to ammonia, namely due to paraffin nonselective oxidation by oxygen catalyzed by unspecified iron-oxide type species typically present in the iron-zeolite catalysts. The mostly used preparation processes include impregnation from water solutions, ion exchange procedures, both in water solution or solid state, as well as gas phase CVD. [Pg.889]

The results presented evidence possibilities of tailoring uniform iron sites in FeMFI zeolites, under specific synthesis and activation conditions. Preparation of steam-activated Fe-silicalite containing mainly isolated iron species in extraffamework positions is essential to derive stmcture-activity relationships in various N2O conversion reactions over iron zeolite catalysts. The activity of the cluster-free Fe-silicalite was significantly higher in N2O reduction with CaHg and CO. However, some level of association of iron species leads to higher activities in direct N2O decomposition. Due to the intrinsic reaction mechanism, this result demonstrates the sensitivity of reactions for the form of the iron species in Fe-zeolites, rather than the existence of a unique active site. [Pg.313]

In a comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst, Colombo et al. [127] observed that iron zeolite catalyst stores a lower amount of strongly bonded ammonia than copper zeolite (Fig. 19.10). In addition, authors claim a greater activity in the ammonia oxidation reaction for the copper zeoUte, together with a less sensitivity to the NO2/NOX ratio for the DeNOx... [Pg.611]

A good catalyst is also stable. It must not deactivate at the high temperature levels (1300 to 1400°F) experienced in regenerators. It must also be resistant to contamination. While all catalysts are subject to contamination by certain metals, such as nickel, vanadium, and iron in extremely minute amounts, some are affected much more than others. While metal contaminants deactivate the catalyst slightly, this is not serious. The really important effect of the metals is that they destroy a catalyst s selectivity. The hydrogen and coke yields go up very rapidly, and the gasoline yield goes down. While Zeolite catalysts are not as sensitive to metals as 3A catalysts, they are more sensitive to the carbon level on the catalyst than 3A. Since all commercial catalysts are contaminated to some extent, it has been necessary to set up a measure that will reflect just how badly they are contaminated. [Pg.16]

Magnetic and Mdssbauer Characterization of Iron-Zeolite and Iron and/or Ruthenium on Doped-Carhon Catalysts... [Pg.498]

Products Company and Davison (W.R. Grace) Catalysts) and Hydrocarbon Technologies, Inc. ART provides non-zeolitic catalysts for ebullating residue hydrocracking and fixed bed pretreating HDT [140], A nanoscale iron based, slurry catalyst is recommended for coal liquefaction, while a molecule-sized and chemically in situ generated catalyst is employed for the high conversion of asphaltenic fractions or heavy oils [141],... [Pg.55]

Catalytic oxidative dehydrogenation of propane by N20 (ODHP) over Fe-zeolite catalysts represents a potential process for simultaneous functionalization of propane and utilization of N20 waste as an environmentally harmful gas. The assumed structure of highly active Fe-species is presented by iron ions balanced by negative framework charge, mostly populated at low Fe loadings. These isolated Fe sites are able to stabilize the atomic oxygen and prevent its recombination to a molecular form, and facilitate its transfer to a paraffin molecule [1], A major drawback of iron zeolites in ODHP with N20 is their deactivation by accumulated coke, leading to a rapid decrease of the propylene yield. [Pg.373]

In the direct ammoxidation of propane over Fe-zeolite catalysts the product mixture consisted of propene, acrylonitrile (AN), acetonitrile (AcN), and carbon oxides. Traces of methane, ethane, ethene and HCN were also detected with selectivity not exceeding 3%. The catalytic performances of the investigated catalysts are summarized in the Table 1. It must be noted that catalytic activity of MTW and silicalite matrix without iron (Fe concentration is lower than 50 ppm) was negligible. The propane conversion was below 1.5 % and no nitriles were detected. It is clearly seen from the Table 1 that the activity and selectivity of catalysts are influenced not only by the content of iron, but also by the zeolite framework structure. Typically, the Fe-MTW zeolites exhibit higher selectivity to propene (even at higher propane conversion than in the case of Fe-silicalite) and substantially lower selectivity to nitriles (both acrylonitrile and acetonitrile). The Fe-silicalite catalyst exhibits acrylonitrile selectivity 31.5 %, whereas the Fe-MTW catalysts with Fe concentration 1400 and 18900 ppm exhibit, at similar propane conversion, the AN selectivity 19.2 and 15.2 %, respectively. On the other hand, Fe-MTW zeolites exhibit higher AN/AcN ratio in comparison with Fe-silicalite catalyst (see Table 1). Fe-MTW-11500 catalyst reveals rather rare behavior. The concentration of Fe ions in the sample is comparable to Fe-sil-12900 catalyst, as well as... [Pg.399]

Xyloflning [Xylol refining] A process for isomerizing a petrochemical feedstock containing ethylbenzene and xylenes. The xylenes are mostly converted to the equilibrium mixture of xylenes the ethylbenzene is dealkylated to benzene and ethylene. This is a catalytic, vapor-phase process, operated at approximately 360°C. The catalyst (Encilite-1) is a ZSM-5-type zeolite in which some of the aluminum has been replaced by iron. The catalyst was developed in India in 1981, jointly by the National Chemical Laboratory and Associated Cement Companies. The process was piloted by Indian Petrochemicals Corporation in 1985 and commercialized by that company at Baroda in 1991. [Pg.295]

However, the hydrogenation catalysts can be promoted also by compounds which are ineffective for the iron ammonia catalysts, e.g., by silica and silicates, silicofluorides, borates, and phosphates. An interesting type of hydrogenation catalysts was found in the form of zeolites which by ion exchange were impregnated with heavy metal salts. [Pg.97]

Although the epoxidation by nitrous oxide proceeds over non-zeolite catalysts, they also include iron as an active element One may think that in all these cases a special oxygen species generated by N20 plays an important role, similar to the a-oxygen on FeZSM-5. [Pg.230]

Destruction of N20 can be carried out at lower temperatures by adding a reductant. In this case an iron-containing zeolite catalyst is used for the selective catalytic reduction of N20 using hydrocarbons as a reductant. The catalyst did not deactivate in a 2000-hour test under demanding conditions (450°C, 6% H20). Hydrocarbons such as propane (or LPG) and methane (widely available as natural gas) can be used as the reducing agent221. [Pg.241]

Series of zeolite-supported iron-containing catalysts with weight percent iron (% Fe) varying from 1 to 17% Fe have been prepared from Fe3(CO) 2 and the synthetic zeolites ZSM-5, mordenite and 13X by an extraction technique. The zeolites ZSM-5 and mordenite were used in the acid form, 13X in the sodium form. [Pg.397]

There is a major economic incentive to extend the current HC processes to enable heavier feedstocks to be converted to lighter, higher-value transportation fuels. Studies by Idemitsu indicate that iron-modified zeolite catalysts significantly enhance conversion when heavy oils such as long residue are hydroprocessed (65). Nevertheless, major technical barriers exist which make high conversions and product selectivities difficult to achieve with truly heavy feeds (end boiling points beyond 620 °C) - these include ... [Pg.148]

EnviNOx Two related processes for removing N20 and NOx from the tailgases from nitric acid manufacture by the Ostwald process. Both variants use two beds of two zeolite catalysts modified with iron. The first variant is for gases hotter than 425°C and involves injecting ammonia between the beds. The second variant, for gases cooler than 425°C, injects ammonia before the first bed and a volatile hydrocarbon between the beds. Developed by Uhde in association with Agrolinz Melamine International. The first variant was installed in Linz, Austria, in 2003. The second variant was installed in Egypt in 2007. The catalysts are supplied by Sud-Chemie. [Pg.127]

Tailoring of the product distribution is possible by a limitation of chain growth by pore size. This has been demonstrated by Ballivel Tkatchenko and Tkatchenko using zeolite catalysts. Ruthenium, iron or cobalt metal particles in Y-zcolilc supcrcagcs were prepared by thermal decomposition of the carbonyls. These metal-zeolite catalysts give selective formation of )- hydrocarbons [471. [Pg.55]


See other pages where Iron zeolite catalysts is mentioned: [Pg.191]    [Pg.399]    [Pg.889]    [Pg.20]    [Pg.191]    [Pg.399]    [Pg.889]    [Pg.20]    [Pg.2104]    [Pg.79]    [Pg.131]    [Pg.344]    [Pg.99]    [Pg.153]    [Pg.54]    [Pg.199]    [Pg.39]    [Pg.214]    [Pg.340]    [Pg.107]    [Pg.199]    [Pg.568]    [Pg.568]    [Pg.69]    [Pg.215]    [Pg.1195]    [Pg.301]    [Pg.354]    [Pg.1861]    [Pg.324]   


SEARCH



Catalysts zeolitic

Iron, catalyst

Zeolite catalyst

© 2024 chempedia.info