Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron catalysts Fischer Tropsch process

Hydrogenation of carbon oxides with iron, cobalt, or nickel catalysts (Fischer-Tropsch process). Hydrocarbons are the main products Recovery and separation of oxygenated products obtained from CO and H2 Partial oxidation of nonaromatic hydrocarbon mixtures, e.g., petroleum, paraffins, and natural gas, to produce a mixture of products, such as esters, acids, aldehydes, ketones, and alcohols. This also includes higher fatty acids from petroleum and patents on formaldehyde production... [Pg.375]

Fischer-Tropsch Process. The Hterature on the hydrogenation of carbon monoxide dates back to 1902 when the synthesis of methane from synthesis gas over a nickel catalyst was reported (17). In 1923, F. Fischer and H. Tropsch reported the formation of a mixture of organic compounds they called synthol by reaction of synthesis gas over alkalized iron turnings at 10—15 MPa (99—150 atm) and 400—450°C (18). This mixture contained mostly oxygenated compounds, but also contained a small amount of alkanes and alkenes. Further study of the reaction at 0.7 MPa (6.9 atm) revealed that low pressure favored olefinic and paraffinic hydrocarbons and minimized oxygenates, but at this pressure the reaction rate was very low. Because of their pioneering work on catalytic hydrocarbon synthesis, this class of reactions became known as the Fischer-Tropsch (FT) synthesis. [Pg.164]

The second reaction is called the Fischer-Tropsch synthesis of hydrocarbons. Depending on the conditions and catalysts, a wide range of hydrocarbons from very light materials up to heavy waxes can be produced. Catalysts for the Fischer-Tropsch reaction iaclude iron, cobalt, nickel, and mthenium. Reaction temperatures range from about 150 to 350°C reaction pressures range from 0.1 to tens of MPa (1 to several hundred atm) (77). The Fischer-Tropsch process was developed iadustriaHy under the designation of the Synthol process by the M. W. Kellogg Co. from 1940 to 1960 (83). [Pg.416]

Sasol Fischer-Tropsch Process. 1-Propanol is one of the products from Sasol s Fischer-Tropsch process (7). Coal (qv) is gasified ia Lurgi reactors to produce synthesis gas (H2/CO). After separation from gas Hquids and purification, the synthesis gas is fed iato the Sasol Synthol plant where it is entrained with a powdered iron-based catalyst within the fluid-bed reactors. The exothermic Fischer-Tropsch reaction produces a mixture of hydrocarbons (qv) and oxygenates. The condensation products from the process consist of hydrocarbon Hquids and an aqueous stream that contains a mixture of ketones (qv) and alcohols. The ketones and alcohols are recovered and most of the alcohols are used for the blending of high octane gasoline. Some of the alcohol streams are further purified by distillation to yield pure 1-propanol and ethanol ia a multiunit plant, which has a total capacity of 25,000-30,000 t/yr (see Coal conversion processes, gasification). [Pg.119]

Rao, V. U. S., Stiegel, G. J., Cinquegrane, G. J., and Srivastava, R. D. 1992. Iron-based catalysts for slurry-phase Fischer-Tropsch process Technology review. Fuel Process. Technol. 30 83-107. [Pg.76]

Davis, B. H. 2003. Fischer-Tropsch synthesis Relationship between iron catalyst composition and process variables. Catalysis Today 84 83-98. [Pg.292]

In many respects the SMDS process (Figure 18.8) precipitated a change in the Fischer-Tropsch community with respect to the preferred catalyst for Fischer-Tropsch synthesis and the approach to product workup. It is therefore instructive to understand why Shell moved away from iron-based Fischer-Tropsch catalysts (and as a consequence also high-temperature synthesis) and opted for a Co-LTFT process with an uncomplicated refinery design that does not produce... [Pg.354]

Duftschmid A variation of the Fischer-Tropsch process in which synthesis gas and an oil are circulated over a fixed bed of iron catalyst in order to increase the yield of olefins from the gas. [Pg.93]

Kolbel-Rheinpreussen A process for converting syngas to gasoline. The gas was passed through a suspension of an iron catalyst in an oil. Developed by H. Kolbel at Rheinpreussen, Germany, from 1936 until the 1950s when it was supplanted by the Fischer-Tropsch process. [Pg.155]

Synthine [Synthetic benzin] An early version of the Fischer-Tropsch process in which a mixture of carbon monoxide and hydrogen was passed over an iron catalyst and thereby converted to a complex mixture of oxygenates. [Pg.263]

In general, TPR measurements are interpreted on a qualitative basis as in the example discussed above. Attempts to calculate activation energies of reduction by means of Expression (2-7) can only be undertaken if the TPR pattern represents a single, well-defined process. This requires, for example, that all catalyst particles are equivalent. In a supported catalyst, all particles should have the same morphology and all atoms of the supported phase should be affected by the support in the same way, otherwise the TPR pattern would represent a combination of different reduction reactions. Such strict conditions are seldom obeyed in supported catalysts but are more easily met in unsupported particles. As an example we discuss the TPR work by Wimmers et al. [8] on the reduction of unsupported Fe203 particles (diameter approximately 300 nm). Such research is of interest with regard to the synthesis of ammonia and the Fischer-Tropsch process, both of which are carried out over unsupported iron catalysts. [Pg.31]

Another important application of iron is as an industrial catalyst. It is used in catalyst compositions in the Haber process for synthesis of ammonia, and in Fischer-Tropsch process for producing synthetic gasoline. [Pg.411]

Foreseeable improvements that will increase operability and decrease operating costs of Fischer-Tropsch processes are the development for the fluidized-iron process of a catalyst that will not accelerate the reaction 2CO = C02 + C and will not be appreciably oxidized during the steady-state life of the catalyst and the development of a more active and mechanically stable catalyst for the oil-circulation process so as further to reduce Ci + C2 production. The hot-gas recycle process could be made operable by use of a catalyst that will be less active but more resistant to thermal shock which occurs during regeneration to remove carbon deposits, and during operation at lower end-gas recycle rates. The powdered catalyst-oil slurry process recently has been satisfactorily operated in a pilot plant by K6lbel and Ackerman (21). Although the space-time yield in this operation was low (10 to 20 kg. of C3+ per cubic meter of slurry per hour), the Ci + C2 production was less than one third of that... [Pg.149]

The Fischer-Tropsch process, as operated in Germany, produces normal paraffin wax also. These waxes melt in the range of 122° to 243° F. and the molecular size extends up to 150 carbon atoms (60). A United States plant employing iron catalyst does not expect to produce these. [Pg.275]

The properties of these new materials as catalyst support were tested on Fischer-Tropsch process (CO-H2 reaction) in a fixed bed differential reactor. Three materials were tested a) CON, a conventional activated carbon b) SC-155 (G40.60) and c) C-155 (G20.20). All of them were previously iron doped until 5% metallic iron wt/wt was reached. The test conditions were Reaction temperature =270°C H2/CO ratio=3, pressure = latm. The main properties of the tested catalyst supports and their performance in the first hour test are shown in Table 2. SC-155 (G40.60) and C-155 (G20.20) were selected for this test in order to compare materials with near the same specific surface area but with different structural composition, and CON was selected because it is of common use and has very different texture characteristics respect to the other two materials. [Pg.708]

Good evidence has been obtained that heterogeneous iron, ruthenium, cobalt, and nickel catalysts which convert synthesis gas to methane or higher alkanes (Fischer-Tropsch process) effect the initial dissociation of CO to a catalyst-bound carbide (8-13). The carbide is subsequently reduced by H2to a catalyst-bound methylidene, which under reaction conditions is either polymerized or further hydrogenated 13). This is essentially identical to the hydrocarbon synthesis mechanism advanced by Fischer and Tropsch in 1926 14). For these reactions, formyl intermediates seem all but excluded. [Pg.3]

A transport reactor is also used in the Sasol Fischer-Tropsch process. The catalyst is promoted iron. It circulates through the 1.0-m (3.28-ft) ID riser at 72,600 kg/h (160,000 lbm/h) at 340°C (644°F) and 23 atm (338 psi) and has a life of about 50 days. Figure 19-23a shows an in-line heat exchanger in the Sasol unit. [Pg.36]

The reactions are catalyzed by transition metals (cobalt, iron, and ruthenium) on high-surface-area silica, alumina, or zeolite supports. However, the exact chemical identity of the catalysts is unknown, and their characterization presents challenges as these transformations are carried out under very harsh reaction conditions. Typically, the Fischer-Tropsch process is operated in the temperature range of 150°C-300°C and in the pressure range of one to several tens of atmospheres [66], Thus, the entire process is costly and inefficient and even produces waste [67]. Hence, development of more economical and sustainable strategies for the gas-to-liquid conversion of methane is highly desirable. [Pg.368]

Historical Development and Future Perspectives The Fischer-Tropsch process dates back to the early 1920s when Franz Fischer and Hans Tropsch demonstrated the conversion of synthesis gas into a mixture of higher hydrocarbons, with cobalt and iron as a catalyst [35, 36], Some 20 years earlier, Sabatier had already discovered the reaction from synthesis gas to methane catalyzed by nickel [37]. The FTS played an important role in the Second World War, as it supplied Germany and Japan with synthetic fuel. The plants used mainly cobalt catalysts supported on a silica support called kieselguhr and promoted by magnesia and thoria. [Pg.455]

Iron catalysts have found only limited use in usual hydrogenations, although they play industrially important roles in the ammonia synthesis and Fischer-Tropsch process. Iron catalysts have been reported to be selective for the hydrogenation of alkynes to alkenes at elevated temperatures and pressures. Examples of the use of Raney Fe, Fe from Fe(CO)5, and Urushibara Fe are seen in eqs. 4.27,4.28, and 4.29, respectively. [Pg.28]

F. Fischer and H. Tropsch, who first described the conversion of synthesis gas into hydrocarbons and oxygen-containing compounds ( oxygenates ) over heterogeneous transition metal catalysts such as iron/zinc oxide. This reaction was developed into a process for the conversion of coal into gasoline. At present such a process is economically feasible only where coal is plentiful and cheap while access to oil products is limited. Currently only South Africa operates plants using the Fischer-Tropsch process. [Pg.1251]


See other pages where Iron catalysts Fischer Tropsch process is mentioned: [Pg.366]    [Pg.52]    [Pg.2104]    [Pg.2375]    [Pg.140]    [Pg.323]    [Pg.120]    [Pg.140]    [Pg.25]    [Pg.18]    [Pg.102]    [Pg.403]    [Pg.637]    [Pg.230]    [Pg.509]    [Pg.453]    [Pg.23]    [Pg.155]    [Pg.1861]    [Pg.2130]   
See also in sourсe #XX -- [ Pg.63 , Pg.64 , Pg.67 , Pg.69 ]




SEARCH



Catalysts Fischer-Tropsch process

Catalysts processes

Fischer catalyst

Fischer process

Fischer-Tropsch catalysts

Fischer-Tropsch iron catalysts

Fischer-Tropsch processing

Iron, catalyst

© 2024 chempedia.info