Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron and Cobalt

In addition, molybdenum has high resistance to a number of alloys of these metals and also to copper, gold, and silver. Among the molten metals that severely attack molybdenum are tin (at 1000°C), aluminum, nickel, iron, and cobalt. Molybdenum has moderately good resistance to molten zinc, but a molybdenum—30% tungsten alloy is practically completely resistant to molten zinc at temperatures up to 800°C. Molybdenum metal is substantially resistant to many types of molten glass and to most nonferrous slags. It is also resistant to hquid sulfur up to 440°C. [Pg.465]

Ca.rbonylProcess. Cmde nickel also can be refined to very pure nickel by the carbonyl process. The cmde nickel and carbon monoxide (qv) react at ca 100°C to form nickel carbonyl [13463-39-3] Ni(CO)4, which upon further heating to ca 200—300°C, decomposes to nickel metal and carbon monoxide. The process is highly selective because, under the operating conditions of temperature and atmospheric pressure, carbonyls of other elements that are present, eg, iron and cobalt, are not readily formed. [Pg.3]

Nickel—Iron and Cobalt—Iron Alloys. Selenium improves the machinabifity of Ni—Ee and Co—Ee alloys which are used for electrical appfications. Neither sulfur nor tellurium are usefiil additives because these elements cause hot britdeness. The addition of 0.4—0.5% selenium promotes a columnar crystal stmcture on solidification, doubling the coercive force of cobalt—iron-titanium alloy permanent magnets produced with an equiaxial grain stmcture. [Pg.336]

In the pulp and paper industry, anionic and cationic acrylamide polymers are used as chemical additives or processing aids. The positive effect is achieved due to a fuller retention of the filler (basically kaoline) in the paper pulp, so that the structure of the paper sheet surface layer improves. Copolymers of acrylamide with vi-nylamine not only attach better qualities to the surface layer of.paper, they also add to the tensile properties of paper in the wet state. Paper reinforcement with anionic polymers is due to the formation of complexes between the polymer additive and ions of Cr and Cu incorporated in the paper pulp. The direct effect of acrylamide polymers on strength increases and improved surface properties of paper sheets is accompanied by a fuller extraction of metallic ions (iron and cobalt, in addition to those mentioned above), which improves effluent water quality. [Pg.71]

Allison, M. and Bennet, A., Novel, Highly Active Iron and Cobalt Catalysts for Olefin Polymerization, CHEMTECH, July, 1999, pp. 24-28. [Pg.321]

Similar initial reactions occur on many metals such as iron and cobalt. This intermediate can now react further in one of two ways. Oxidation and protonation of the intermediate to Ni(II) leads to dissolved nickel ions (active corrosion) which are unable to passivate the metal ... [Pg.127]

The incorporation of anions from the electrolyte, such as borate and carbonate, into the oxide has also been shown to occur on iron and cobalt, such anions being restricted to the outer layers of the film. Attempts to find incorporation of chloride into passive iron surfaces from... [Pg.141]

Fig, 37. Far-infrared spectra of chromium, iron, and cobalt atom reactions with benzene, benzene-(f and benzene/benzene-d mixtures in argon matrices at 10-12K 171). [Pg.146]

The detection limits for iron and cobalt cations on cellulose layers are 2 and 20 ng substance per chromatogram zone [1]. [Pg.84]

Structural types for organometallic rhodium and iridium porphyrins mostly comprise five- or six-coordinate complexes (Por)M(R) or (Por)M(R)(L), where R is a (T-bonded alkyl, aryl, or other organic fragment, and Lisa neutral donor. Most examples contain rhodium, and the chemistry of the corresponding iridium porphyrins is much more scarce. The classical methods of preparation of these complexes involves either reaction of Rh(III) halides Rh(Por)X with organolithium or Grignard reagents, or reaction of Rh(I) anions [Rh(Por)] with alkyl or aryl halides. In this sense the chemistry parallels that of iron and cobalt porphyrins. [Pg.293]

C08-0023. Iron and cobalt form compounds that can be viewed as containing cations, but nickel does not. Use the ionization energies in Appendix C to predict which other transition metal elements are unlikely to form stable cations with charges greater than +2. [Pg.552]

Except for the elements at the ends of the rows, each transition metal can exist in several different oxidation states. The oxidation states displayed by the 3d transition metals are shown in Table 20-1. The most important oxidation states are highlighted in the table. The most common oxidation state for the 3d transition metals is +2, known for all the elements except Sc. Chromium, iron, and cobalt are also stable in the +3 oxidation state, and for vanadium and manganese the -H4 oxidation state is stable. Elements from scandium to manganese have a particularly stable oxidation state corresponding to the loss of ah the valence electrons configuration). [Pg.1432]

Many late transition metals such as Pd, Pt, Ru, Rh, and Ir can be used as catalysts for steam reforming, but nickel-based catalysts are, economically, the most feasible. More reactive metals such as iron and cobalt are in principle active but they oxidize easily under process conditions. Ruthenium, rhodium and other noble metals are more active than nickel, but are less attractive due to their costs. A typical catalyst consists of relatively large Ni particles dispersed on an AI2O3 or an AlMg04 spinel. The active metal area is relatively low, of the order of only a few m g . ... [Pg.302]

Considerable progress has been made recently In the development of In situ spectroscopic techniques applicable to the study of transition metal macrocycles adsorbed at submonolayer coverages onto electrode surfaces. These have been aimed at gaining Insight into the nature of the Interactions of these compounds with the surface and with 02 Most of the attention In the authors laboratory has been focused on Fe- and Co-TsPc, although some preliminary results have already been obtained for some Iron and cobalt porphyrins. The main conclusions obtained from these Investigations will be outlined In the following sections. [Pg.537]

Nickel is a malleable, ductile, tenacious, slightly magnetic, silvery white metal, which conducts heat and electricity fairly well. It is ferromagnetic at ordinary temperatures but becomes paramagnetic at elevated temperatures. Nickel is closely related in chemical properties to iron and cobalt. While sulphidic sources of nickel account for the world s major nickel supplies, it may be pointed out that lateritic nickel deposits (which essentially constitute an oxidic source of the metal) are more extensive than the sulphidic sources. [Pg.66]

The metal ion, e.g. Fe or Co, when in its lower oxidation state can share electron charge with the oxygen molecule adduct. Several iron and cobalt prophyrin derivatives and cobalt-Schiff bases show the necessary reversibility and rates for successful application [e.g. 23]. a, a, a", a" -weso-tetrakis[(o-piralamidophenyl)-po phinato] Co (II) has been complexed with 1-methylimidazole to make a complex (CoPIm) which, when mixed with polybutyl methacrylate gave oxygen permeabilities on the order of 10-9 sec-cm/(cm2-s-cmHg) with a selectivity of about 5 over nitrogen [23]. [Pg.214]

Anionic complexes of iron and cobalt rapidly react with permethylated a,a>-dihalopolysilanes to give disubstituted polysilanes [1,2]. Because of the low nucleophilicity of pure carbonyl-cobaltate, we substituted one of the CO ligands with PPh3, whereupon the reactivity increased dramatically. [Pg.213]

Clearly, from inspection of Table 4.14, there is a good correlation between the steric bulk of R and L and the non-coincidence angle a. Furthermore, analysis of the hyperfine parameters leads to the conclusion that only about 25% of the electron spin resides in Co orbitals (mainly dxz), and crystal structures of the R = CF3, L = PPh3 and P(OPh)3 complexes do indeed show distortions. The difference between iron and cobalt is just one electron, but this electron occupies a dithiolene 7i orbital, which makes the cobalt complexes much more easily distorted. [Pg.87]

It is useful to consider the relative ease of skeletal reactions compared with adsorption and desorption indicated by deuterium exchange. Here one must ensure that exchange and skeletal reactions involve the same adsorbed intermediate, and this requires working at comparable temperatures, and assessing the adsorbed intermediate from the initial exchange products (cf. 116a). Skeletally important intermediates appear, for instance, to be reversibly adsorbed on platinum and palladium, but irreversibly adsorbed on iron and cobalt. [Pg.27]

These sandwich complexes have been prepared [(ir-B9C2Hn)2M]-, j(jr-B9C2-H,oC6H6)2M]-, [(7r-B9C2H9(CH3)2)2M] (M = Fe, Co substituents are on the carbon atoms). The unsubstituted complexes of iron and cobalt and the phenyl-substituted complex of cobalt are stable toward base and may be prepared by either... [Pg.111]

The study just described is in accordance with the observation that electrochemical reduction of the (highly conjugated) phthalocyanine (5) complex of Mn(n) also gives no evidence for the formation of a Mn(i) species (in contrast to the corresponding iron and cobalt complexes which, on reduction, yield Fe(i) and Co(i) products) (Lever, Minor Wilshire, 1981). [Pg.219]

Van Steen11 and Schulz et al.24,25 have presented a detailed analysis of FT products obtained on iron and cobalt catalysts that revealed an exponential decrease of branching with increasing carbon number, as demonstrated in Figure 11.8. At elevated carbon numbers the fractions of branched hydrocarbons approach a constant value. [Pg.207]

The most difficult problem to solve in the design of a Fischer-Tropsch reactor is its very high exothermicity combined with a high sensitivity of product selectivity to temperature. On an industrial scale, multitubular and bubble column reactors have been widely accepted for this highly exothermic reaction.6 In case of a fixed bed reactor, it is desirable that the catalyst particles are in the millimeter size range to avoid excessive pressure drops. During Fischer-Tropsch synthesis the catalyst pores are filled with liquid FT products (mainly waxes) that may result in a fundamental decrease of the reaction rate caused by pore diffusion processes. Post et al. showed that for catalyst particle diameters in excess of only about 1 mm, the catalyst activity is seriously limited by intraparticle diffusion in both iron and cobalt catalysts.1... [Pg.216]


See other pages where Iron and Cobalt is mentioned: [Pg.229]    [Pg.164]    [Pg.304]    [Pg.7]    [Pg.11]    [Pg.40]    [Pg.51]    [Pg.52]    [Pg.212]    [Pg.309]    [Pg.1063]    [Pg.577]    [Pg.94]    [Pg.382]    [Pg.123]    [Pg.230]    [Pg.155]    [Pg.40]    [Pg.725]    [Pg.57]    [Pg.214]    [Pg.25]    [Pg.327]    [Pg.624]    [Pg.171]    [Pg.200]   


SEARCH



Cadmium, cobalt, copper, iron, lead, nickel and zinc by ETAAS

Carbonyl complexes cobalt, iron, osmium, and ruthenium

Cobalt-, manganese-, and iron-catalyzed cross-coupling reactions

Cobalt-iron

Compounds of Iron, Molybdenum, Tungsten, Rhenium, Platinum, Nickel and Cobalt

Containing Metal-Carbon cr-Bonds of the Groups Iron, Cobalt, and Nickel

Coordination symmetry of iron and cobalt in staurolite

Iron and Cobalt Carbonyl Anions

Iron and Cobalt Complexes with Peripheral N-Heteroaromatic Substituents

Iron-, Copper-, Nickel-, and Cobalt-Catalyzed Carbonylative Domino Reactions

Metal-Carbon r-Bonds of the Groups Iron, Cobalt, and Nickel

Miscellaneous metals including sodium, lithium, ammonium, potassium, magnesium, calcium, lead, copper, cadmium, cobalt, nickel, iron, zinc and 14 lanthanides

Oxygen carriers, cobalt and iron

Polyfunctional Zinc, Cobalt and Iron Organometallics Prepared by Electrosynthesis

Reactions Involving Rhodium, Iron, and Cobalt

© 2024 chempedia.info