Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IR techniques

The SSG procedure assumes absence of voids (or constant void content). Voids depress the values of the measured specific gravity. The inaccuracies that result from voids can be corrected by applying ir techniques (63). [Pg.350]

Latexes of synthetic resins are identified by ir spectrometry. Selective extraction with organic solvents is used to obtain purified fractions of the polymers for spectrometric identification. Polymeric films can be identified by the multiple internal reflectance ir technique, if the film is smooth enough to permit intimate contact with the reflectance plate. TAPPI and ASTM procedures have not been written for these instmmental methods, because the interpretation of spectra is not amenable to standardization. [Pg.11]

C. A Hander, B. Ljungqvist. Air Movements—The Dispersion of Pollution. Expluraiory lests Using IR Techniques. Document 016 1979. Swedish Council for Building Rescardi, Stod- -hohri, Sweden, 1979. [Pg.1119]

Gas chromatographic techniques and FI IR techniques are also used for the monitoring of VOCs. [Pg.1299]

New IR techniques introduced for the study of prototropic tautomerism include IR dicroism for the photoinduced double proton transfer in por-phine 71 (Scheme 24) [89CPH(136)165], and IR spectroscopy in a supersonic jet (less than 50 K) for demonstrating the presence, in these conditions, of 2//-benzotriazole (57b) [96CPL(262)689]. [Pg.47]

The IR technique also yielded temperature distributions (Fig. 2.17) in the symmetry plane at Re = 30 and g = 19 x lO W/m. The wall temperature decreases by axial conduction through the solid walls in the last part of the micro-channel (x/L > 0.75) since this part is not heated. Neither the wall nor the fluid bulk temperature distribution can be approximated as linear. [Pg.29]

The variation in the lattice vibration of the solid products was examined by utilizing the FT-IR technique at successive DGC process times and the results are presented in Fig. 5. The absorption bands at 550 cm and 450 cm" are assigned to the vibration of the MFI-type zeolite and the internal vibration of tetrahedral inorganic atoms. The band 960 cm" has been assigned to the 0-Si stretching vibration associated with the incorporation of titanium species into silica lattice [4], This indicates that the amorphous wall of Ti-MCM-41 was transformed into the TS-1 structure. [Pg.791]

It is generally assumed the fluorescence and Fourier transform mid-infrared (FT-IR) spectroscopies do not suffer from the above-mentioned inconveniences and may be applied to turbid samples. Front-face (fluorescence) and attenuated total reflection (FT-IR) techniques may provide information on the structure of adsorbed proteins. [Pg.266]

Since modern FTIR spectrometers can operate in a rapid scan mode with approximately 50 ms time resolution, TRIR experiments in the millisecond time regime are readily available. Recent advances in ultra-rapid scanning FTIR spectroscopy have improved the obtainable time resolution to 5 ms. Alternatively, experiments can be performed at time resolutions on the order of 1-10 ms with the planar array IR technique, which utilizes a spectrograph for wavelength dispersion and an IR focal plane detector for simultaneous detection of multiple wavelengths. ... [Pg.187]

Photocatalytic oxidation of ethanol on Pt/ri02 and Nafion coated Ti02 catalysts were studied using in situ infrared IR techniques. Infrared studies show that the reaction produced acetaldehyde, acetic acid, acetate, formic acid, formate, and CO2/H2O. Modification of the Ti02 catalyst by Pt and Nafion slowed down the oxidation reaction through site blocking. Incorporation of Pt was found to favor formation of formate (HCOO ), indicating Pt decreases the rate of oxidation of formate more than that of its formation. [Pg.463]

FTIR instrumentation is mature. A typical routine mid-IR spectrometer has KBr optics, best resolution of around 1cm-1, and a room temperature DTGS detector. Noise levels below 0.1 % T peak-to-peak can be achieved in a few seconds. The sample compartment will accommodate a variety of sampling accessories such as those for ATR (attenuated total reflection) and diffuse reflection. At present, IR spectra can be obtained with fast and very fast FTIR interferometers with microscopes, in reflection and microreflection, in diffusion, at very low or very high temperatures, in dilute solutions, etc. Hyphenated IR techniques such as PyFTIR, TG-FTIR, GC-FTIR, HPLC-FTIR and SEC-FTIR (Chapter 7) can simplify many problems and streamline the selection process by doing multiple analyses with one sampling. Solvent absorbance limits flow-through IR spectroscopy cells so as to make them impractical for polymer analysis. Advanced FTIR... [Pg.316]

For more extensive references on the use of IR techniques the reader is referred to previous compilations [41,42,44]. The application of FUR spectroscopy to the analysis of plastic additives has extensively been reviewed [95]. [Pg.318]

Depending on the difference in adsorption energies (see Section 5.4) dinitrosyl complexes are formed either concomitantly or subsequently with the mononitrosyl complexes. Those processes have been widely investigated for selected TMIs and can be followed easily by IR technique [57], The appearance of a characteristic doublet due to the collective antisymmetric and symmetric vibrations of the M(NO)2 moiety growing at the expanse of the NO valence band is usually taken as a confirmation of the dinitrosyl formation. As discussed below in more detail, they play important role in the inner-sphere route of the N—N bond making (see Section 6.2.1). [Pg.44]

Until recently, fast time-resolved IR spectroscopy has been a technique fraught with difficulty. Generally it has been easier to use low temperature techniques, particularly matrix isolation (2,4), to prolong the lifetime of the fragments so that conventional spectrometers can be used. In the last 5 years, however, there have been major advances in fast IR spectroscopy. It is now posssible to detect metal carbonyl intermediates at room temperature in both solution and gas phase reactions. In Section II of this article, we explain the principles of these new IR techniques and describe the apparatus involved in some detail. In Section III we give a self-contained summary of the organometallic chemistry that has already been unravelled by time-resolved IR spectroscopy. [Pg.278]

External reflectance. The most commonly applied in situ IR techniques involve the external reflectance approach. These methods seek to minimise the strong solvent absorption by simply pressing a reflective working electrode against the IR transparent window of the electrochemical cell. The result is a thin layer of electrolyte trapped between electrode and window usually 1 to 50 pm. A typical thin layer cell is shown in Figure 2.40. [Pg.100]

Allows an electrochemical system to be probed by both UV-visible and IR techniques (providing a non-aqueous electrolyte is employed) and so allows information on the excited state to be obtained. [Pg.210]

Unless the coverage of adsorbate is monitored simultaneously using spectroscopic methods with the electrochemical kinetics, the results will always be subject to uncertainties of interpretation. A second difficulty is that oxidation of methanol generates not just C02 but small quantities of other products. The measured current will show contributions from all these reactions but they are likely to go by different pathways and the primary interest is that pathway that leads only to C02. These difficulties were addressed in a recent paper by Christensen and co-workers (1993) who used in situ FT1R both to monitor CO coverage and simultaneously to measure the rate of C02 formation. Within the reflection mode of the IR technique used in this paper this is not a straightforward undertaking and the effects of diffusion had to be taken into account in order to help quantify the data obtained. [Pg.290]

It was reasoned that the polymer must consist of a, a -coupled pyrrole units, with fi coupling less important, because of the fact that oc-substituted pyrroles do not polymerise whereas -substituted species do, and on the basis of magic angle spinning 13C nmr and IR techniques. The method of labelling the monomer ring positions is also shown in Scheme 3.9. [Pg.334]

IR spectra did not show differences between the intermediate phase and the disordered cancrinite. Therefore, IR techniques fail when were used to identify these phases. One more effective way to identify disordered cancrinite and the intermediate phase is by using X-ray diffraction (XRD). Fig 1 shows the diffractogram of both tectosilicates. In the intermediate phase, the observed peaks correspond with those reported in the literature[4]. The main differences between both spectra correspond to those peaks placed between 25°<20<35°, which are more intense for the disordered cancrinite [9]. Likewise, the results of specific surface area for the intermediate phase (sample 5) and the disordered cancrinite (sample 6) were 35 and 41 m2/g respectively. The antacid capacity test was carried out with the samples 5 and 6. Fig. 2 shows the relationship between experimental pH versus the mass content of the tectosilicates. The neutralization capacity of these solids is related with its carbonate content which reacts with the synthetic gastric juice to neutralize it. In general, the behaviour of solids is similar the pH increases as the weight of the studied solid is increased. However, a less disordered cancrinite mass amount must be employed to reach a pH= 4 in comparison... [Pg.146]

Nonetheless, near-IR is the most widely used IR technique. Less intense water absorptions permit to increase the sampling volume to compensate, to some extent, for the lower near-IR absorption coefficients and the inferior specificity of the absorption bands can for many applications be overcome by application of advanced chemometric methods. Miniaturised light sources, various sensor probes, in particular based on transmission or transflectance layouts, and detectors for this spectral range are available at competitive prices, as are (telecommunications) glass or quartz fibres. [Pg.123]

An instrument for measuring temperatures, in the rubber industry the term is usually applied to an instrument for determining the surface temperature of mill and calender rolls, moulds, etc. The instrument is usually based on thermocouples or, where higher accuracy is required, platinum resistance thermometers. Infrared (IR) techniques are now used which have the advantage of non contact but require careful calibration for the emissivity of the surface. [Pg.51]

The near-IR technique has been used very successfully for moisture determination, whole tablet assay, and blending validation [23]. These methods are typically easy to develop and validate, and far easier to run than more traditional assay methods. Using the overtone and combination bands of water, it was possible to develop near-IR methods whose accuracy was equivalent to that obtained using Karl-Fischer titration. The distinction among tablets of differing potencies could be performed very easily and, unlike HPLC methods, did not require destruction of the analyte materials to obtain a result. [Pg.9]

In each of the aforementioned studies, qualitative IR spectroscopy was used. It is important to realize that IR is also quantitative in nature, and several quantitative IR assays for polymorphism have appeared in the literature. Sulfamethoxazole [35] exists in at least two polymorphic forms, which have been fully characterized. Distinctly different diffuse reflectance mid-IR spectra exist, permitting quantitation of one form within the other. When working with the diffuse reflectance IR technique, two critical factors must be kept in mind when developing a quantitative assay (1) the production of homogeneous calibration and validation samples, and (2) consistent particle size for all components, including subsequent samples for analysis. During the assay development for... [Pg.73]

Beside mid-IR, near-IR spectroscopy has been used to quantitate polymorphs at the bulk and dosage product level. For SC-25469 [34], two polymorphic forms were discovered (a and /3), and the /3-form was selected for use in the solid dosage form. Since the /3-form can be transformed to the a-form under pressure by enantiotropy, quantitation of the /3-form in the solid dosage formulation was necessary. Standard mixtures of both forms in the formulation matrix were prepared, and spectra were measured in the near-IR via diffuse reflectance. Utilizing a standard, near-IR multiple linear regression, statistical approach, the a- and /3-forms could be predicted to within 1% of theoretical. This extension of the diffuse reflectance IR technique shows that quantitation of polymorphic forms at the bulk and/or dosage product level can be performed. [Pg.74]


See other pages where IR techniques is mentioned: [Pg.389]    [Pg.403]    [Pg.366]    [Pg.368]    [Pg.381]    [Pg.29]    [Pg.126]    [Pg.436]    [Pg.76]    [Pg.126]    [Pg.276]    [Pg.405]    [Pg.41]    [Pg.123]    [Pg.127]    [Pg.135]    [Pg.16]    [Pg.676]    [Pg.677]    [Pg.312]    [Pg.23]    [Pg.96]    [Pg.138]    [Pg.215]    [Pg.70]   
See also in sourсe #XX -- [ Pg.85 ]




SEARCH



Time-resolved conventional IR techniques

Transmission/absorption IR techniqu

© 2024 chempedia.info