Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer ionization

Chemical properties of deposited monolayers have been studied in various ways. The degree of ionization of a substituted coumarin film deposited on quartz was determined as a function of the pH of a solution in contact with the film, from which comparison with Gouy-Chapman theory (see Section V-2) could be made [151]. Several studies have been made of the UV-induced polymerization of monolayers (as well as of multilayers) of diacetylene amphiphiles (see Refs. 168, 169). Excitation energy transfer has been observed in a mixed monolayer of donor and acceptor molecules in stearic acid [170]. Electrical properties have been of interest, particularly the possibility that a suitably asymmetric film might be a unidirectional conductor, that is, a rectifier (see Refs. 171, 172). Optical properties of interest include the ability to make planar optical waveguides of thick LB films [173, 174]. [Pg.560]

Experimental access to the probabilities P(E ,E) for energy transfer in large molecules usually involves teclmiques providing just the first moment of this distribution, i.e. the average energy (AE) transferred in a collision. Such methods include UV absorption, infrared fluorescence and related spectroscopic teclmiques [11. 28. 71. 72, 73 and 74]. More advanced teclmiques, such as kinetically controlled selective ionization (KCSI [74]) have also provided infonnation on higher moments of P(E ,E), such as ((AE) ). [Pg.1055]

Hold U, Lenzer T, Luther K, Reihs K and Symonds A C 2000 Collisional energy transfer probabilities of highly excited molecules from kinetically controlled selective ionization (KCSI). I. The KCSI technique experimental approach for the determination of P(E, E) in the quasicontinuous energy ranged. Chem. Phys. 112 4076-89... [Pg.1086]

A third method for generating ions in mass spectrometers that has been used extensively in physical chemistry is chemical ionization (Cl) [2]. Chemical ionization can involve the transfer of an electron (charge transfer), proton (or otlier positively charged ion) or hydride anion (or other anion). [Pg.1330]

A-B relative or external motion undergo free-free transitions (E., E. + dE.) (Ej Ej+ dE within the translational continuum, while the structured particles undergo bound-bound (excitation, de-excitation, excitation transfer) or bound-free (ionization, dissociation) transitions = (a, 3) ->/= (a, (3 ) in their internal electronic, vibrational or rotational structure. The transition frequency (s ) for this collision is... [Pg.2011]

When the incident beam of fast-moving atoms or ions impinges onto the liquid target surface, major events occur within the first few nanometers, viz., momentum transfer, general degradation, and ionization. [Pg.18]

The FAB source operates near room temperature, and ions of the substance of interest are lifted out from the matrix by a momentum-transfer process that deposits little excess of vibrational and rotational energy in the resulting quasi-molecular ion. Thus, a further advantage of FAB/LSIMS over many other methods of ionization lies in its gentle or mild treatment of thermally labile substances such as peptides, proteins, nucleosides, sugars, and so on, which can be ionized without degrading their. structures. [Pg.81]

In dynamic FAB, this solution is the eluant flowing from an LC column i.e., the target area is covered by a flowing liquid (dynamic) rather than a static one, as is usually the case where FAB is used to examine single substances. The fast atoms or ions from the gun carry considerable momentum, and when they crash into the surface of the liquid some of this momentum is transferred to molecules in the liquid, which splash back out, rather like the result of throwing a stone into a pond (Figure 13.2). This is a very simplistic view of a complex process that also turns the ejected particles into ions (see Chapter 4 for more information on FAB/LSIMS ionization). [Pg.82]

Ionization can be improved in many cases by placing the sample in a matrix formed from sinapic acid, nicotinic acid, or other materials. This variant of laser desorption is known as matrix-assisted laser desorption ionization (MALDI). The vaporized acids transfer protons to sample molecules (M) to produce protonated ions [M + H]+. [Pg.384]

The distortion caused by the field allows an electron to pass from the molecule to the tip if the applied potential is positive or from the tip to the molecule if the potential is negative. This is called field ionization (FI), and the electron transfer occurs through quantum tunneling. Little or no vibrational excitation occurs, and the ionization is described as mild or soft. [Pg.386]

The ablated vapors constitute an aerosol that can be examined using a secondary ionization source. Thus, passing the aerosol into a plasma torch provides an excellent means of ionization, and by such methods isotope patterns or ratios are readily measurable from otherwise intractable materials such as bone or ceramics. If the sample examined is dissolved as a solid solution in a matrix, the rapid expansion of the matrix, often an organic acid, covolatilizes the entrained sample. Proton transfer from the matrix occurs to give protonated molecular ions of the sample. Normally thermally unstable, polar biomolecules such as proteins give good yields of protonated ions. This is the basis of matrix-assisted laser desorption ionization (MALDI). [Pg.399]

Charge-exchange (charge transfer) ionization. Occurs when an ion/atom or ion/molecule reaction takes place in which the chaise on the ion is transferred to the neutral species without any dissociation of either. [Pg.438]

Reaction (5.N) describes the nylon salt nylon equilibrium. Reactions (5.0) and (5.P) show proton transfer with water between carboxyl and amine groups. Since proton transfer equilibria are involved, the self-ionization of water, reaction (5.Q), must also be included. Especially in the presence of acidic catalysts, reactions (5.R) and (5.S) are the equilibria of the acid-catalyzed intermediate described in general in reaction (5.G). The main point in including all of these equilibria is to indicate that the precise concentration of A and B... [Pg.306]

Although it is conceptually useful to think of two successive processes following the initial ionization to A, the electron transfer and the generation of the Auger electron occur simultaneously. [Pg.316]

Copolymerization is effected by suspension or emulsion techniques under such conditions that tetrafluoroethylene, but not ethylene, may homopolymerize. Bulk polymerization is not commercially feasible, because of heat-transfer limitations and explosion hazard of the comonomer mixture. Polymerizations typically take place below 100°C and 5 MPa (50 atm). Initiators include peroxides, redox systems (10), free-radical sources (11), and ionizing radiation (12). [Pg.365]

The cation—radical intermediate loses a proton to become, in this case, a benzyl radical. The relative rate of attack (via electron transfer) on an aromatic aldehyde with respect to a corresponding methylarene is a function of the ionization potentials (8.8 eV for toluene, 9.5 eV for benzaldehyde) it is much... [Pg.344]

Referring back to equation 47, the other quantity necessary in calculating the gas conductivity is the coUision cross section, Gases contain at least four types of particles electrons, ionized seed atoms, neutral seed atoms, and neutral atoms of the carrier gas. Combustion gases, of course, have many more species. Each species has a different momentum transfer cross section for coUisions with electrons. To account for this, the product nQ in equation 47 is replaced by the summation where k denotes the different species present. This generalization also aUows the conductivity calculation to... [Pg.419]


See other pages where Transfer ionization is mentioned: [Pg.319]    [Pg.344]    [Pg.1337]    [Pg.133]    [Pg.236]    [Pg.65]    [Pg.446]    [Pg.446]    [Pg.892]    [Pg.121]    [Pg.319]    [Pg.344]    [Pg.1337]    [Pg.133]    [Pg.236]    [Pg.65]    [Pg.446]    [Pg.446]    [Pg.892]    [Pg.121]    [Pg.1320]    [Pg.1323]    [Pg.1323]    [Pg.1822]    [Pg.1842]    [Pg.2577]    [Pg.2802]    [Pg.2892]    [Pg.3]    [Pg.19]    [Pg.20]    [Pg.20]    [Pg.73]    [Pg.93]    [Pg.106]    [Pg.284]    [Pg.399]    [Pg.438]    [Pg.237]    [Pg.316]    [Pg.400]   
See also in sourсe #XX -- [ Pg.401 ]




SEARCH



Charge transfer first ionization potential

Charge transfer ionization

Charge-transfer absorption band electron acceptor, ionization

Charge-transfer chemical ionization

Charge-transfer complexes reversible ionization

Chemical ionization proton transfer

Electron transfer, ionization

Fate of Deposited Energy Ionization, Dissociation, Transfer, and Luminescence

First ionization potential, charge transfer interactions

Ionization by charge transfer

Ionizing Radiation linear energy transfer

Proton transfer dynamics ionized

Proton transfer dynamics ionized clusters

Rotational energy transfer ionization

© 2024 chempedia.info