Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic polarization

The GBR resin works well for nonionic and certain ionic polymers such as various native and derivatized starches, including sodium carboxymethylcel-lulose, methylcellulose, dextrans, carrageenans, hydroxypropyl methylcellu-lose, cellulose sulfate, and pullulans. GBR columns can be used in virtually any solvent or mixture of solvents from hexane to 1 M NaOH as long as they are miscible. Using sulfonated PDVB gels, mixtures of methanol and 0.1 M Na acetate will run many polar ionic-type polymers such as poly-2-acrylamido-2-methyl-l-propanesulfonic acid, polystyrene sulfonic acids, and poly aniline/ polystyrene sulfonic acid. Sulfonated columns can also be used with water glacial acetic acid mixtures, typically 90/10 (v/v). Polyacrylic acids run well on sulfonated gels in 0.2 M NaAc, pH 7.75. [Pg.400]

Attempts to classify carbides according to structure or bond type meet the same difficulties as were encountered with hydrides (p. 64) and borides (p. 145) and for the same reasons. The general trends in properties of the three groups of compounds are, however, broadly similar, being most polar (ionic) for the electropositive metals, most covalent (molecular) for the electronegative non-metals and somewhat complex (interstitial) for the elements in the centre of the d block. There are also several elements with poorly characterized, unstable, or non-existent carbides, namely the later transition elements (Groups 11 and 12), the platinum metals, and the post transition-metal elements in Group 13. [Pg.297]

Not all ionic liquids are the same, different combinations of anions and cations produce solvents with different polarities. No ionic liquids have shown themselves to be super-polar regardless of the method used to assess their polarities, ionic liquids come within the range of molecular solvents. Most general measures of overall polarity place ionic liquids in the range of the short- to medium-chain alcohols. [Pg.102]

Phospholipids are found widely in both plant and animal tissues and make up approximately 50% to 60% of cell membranes. Because they are like soaps in having a long, nonpolar hydrocarbon tail bound to a polar ionic head, phospholipids in the cell membrane organize into a lipid bilayer about 5.0 nm (50 A) thick. As shown in Figure 27.2, the nonpolar tails aggregate in the center of the bilayer in much the same way that soap tails aggregate in the center of a micelle. This bilayer serves as an effective barrier to the passage of water, ions, and other components into and out of cells. [Pg.1067]

The electrospray process is susceptible to competition/suppression effects. All polar/ionic species in the solution being sprayed, whether derived from the analyte or not, e.g. buffer, additives, etc., are potentially capable of being ionized. The best analytical sensitivity will therefore be obtained from a solution containing a single analyte, when competition is not possible, at the lowest flow rate (see Section 4.7.1 above) and with the narrowest diameter electrospray capillary. [Pg.164]

A potential problem encountered in these determinations is the ion suppression encountered in the presence of polar/ionic interfering materials which compete with the analyte(s) for ionization (see Section 4.7.2 earlier). Many of these analyses therefore involve some degree of off-line purification and/or an appropriate form of chromatography. Since it is not unusual to encounter closely related compounds that are not easily separated, it is also not unusual to employ both of these approaches, as in the following example. This illustrates the use of HPLC as a method of purification and demonstrates that highly efficient separations are not always required for valuable analytical information to be obtained. [Pg.198]

It is well known that electrospray ionization (El) suffers from suppression effects when polar/ionic compounds other than the analyte(s) of interest, such as those originating from the sample matrix, are present, with this phenomenon being attributed to competitive ionization of all of the appropriate species present [33]. Matrix effects can, therefore, be considerable and these have two distinct implications for quantitative procedures, as follows ... [Pg.270]

Ion-exchange solid-phase extractions are used for ionic compounds. The pH of the extracts is adjusted to ionize the target analytes so that they are preferentially retained by the stationary bonded phase. Selection of the bonded phase depends on the pK or pA b of the target analytes. Sample cleanup using ion exchange is highly selective and can separate polar ionic compounds that are difficult to extract by the liquid-liquid partition technique. [Pg.877]

Applicability to a wide variety of sample types (ionic, polar ionic/nonionic, nonpolar nonionic, high-molecular) and complex mixtures... [Pg.275]

Table 6.10 reports the main areas of application of the various ionisation methods and the principal ions detected. A breakdown of MS techniques applied to various types of analytes is as follows thermally stable, low-MW Cl, El thermally instable, low-MW APCI (FLA, LC-MS), ESI and high-MW DCI, FD, FAB, LD, ESI (FLA, LC-MS, CZE-MS). Soft ionisation techniques such as FL, FAB and LD are useful for the detection of non-volatile, sometimes oligomeric, polymer additives. Recent developments in ionisation techniques have allowed the analysis of polar, ionic, and high-MW compounds, previously not amenable to mass-spectrometric analysis. Figure 6.4 shows the applicability of various atmospheric pressure ionisation techniques in terms of molar mass and polarity. [Pg.359]

Shirakawa polyacetylene, 444 Siloxanes, polymerization, 239 Size exclusion chromatography, 262-263 Solubility, specialty polymers, 256 Spacers, flexible polymer backbones, 97 Specialty polymers, polar/ionic groups, 256 Stability, polymers, 256 Storage moduli, vs. temperature behavior, 270... [Pg.482]

High performance liquid chromatography (HPLC) ESI, APCI, APPI Separation of polar, ionic, nonvolatile, high molecular weight and thermally labile analytes... [Pg.43]

The lipids are bound to the fine particles of the adsorbent by polar, ionic and van der Waals forces, the most polar being held most tightly, and separation takes place according to the relative polarities of the individual lipids (Table 12.9). It is usual to elute the lipids from the column with solvents of... [Pg.430]

In microwave-assisted synthesis, a homogeneous mixture is preferred to obtain a uniform heating pattern. For this reason, silica gel is used for solvent-free (open-vessel) reactions or, in sealed containers, dipolar solvents of the DMSO type. Welton (1999), in a review, recommends ionic liquids as novel alternatives to the dipolar solvents. Ionic liquids are environmentally friendly and recyclable. They have excellent dielectric properties and absorb microwave irradiation in a very effective manner. They exhibit a very low vapor pressure that is not seriously enhanced during microwave heating. This makes the process not so dangerous as compared to conventional dipolar solvents. The polar participants of organic ion-radical reactions are perfectly soluble in polar ionic liquids. [Pg.279]

The STO-3G model provides a very non-uniform account of dipole moments in these compounds (see Figure 10-1). Calculated dipole moments for extremely polar ( ionic ) molecules like lithium chloride are almost always much smaller than experimental values, while dipole moments for moderately polar molecules such as silyl chloride are often larger, and dipole moments for other molecules like carbon... [Pg.314]

As seen from comparison of data in Tables AlO-l and AlO-2, local density models parallel the behavior of the corresponding Hartree-Fock models. Except for highly polar ( ionic ) lithium and sodium compounds, dipole moments are generally larger than experimental values. Recall that local density models typically (but not always) exhibit the same systematic errors in bond lengths (too short) and stretching frequencies (too large) as Hartree-Fock models. [Pg.321]

All density functional models exhibit similar behavior with regard to dipole moments in diatomic and small polyatomic molecules. Figures 10-6 (EDFl) and 10-8 (B3LYP) show clearly that, except for highly polar (ionic) molecules, limiting (6-311+G basis set) dipole moments are usually (but not always) larger than experimental values. [Pg.321]

This generalized structure was mimicked by a very simplified artificial molecule 1. The hydrophilic core part 2 was substituted simply by an oligoether carboxylate anion. The carboxylate may act as the polar ionic head group outside the membrane and the ether part of the molecule may be located in the interior part of the membrane to make an ion-conducting pathway. The molecular lengths were adjusted to fit the lipid monolayer in an extended or a helical conformation, with n being 2 or 3 in 1. The hydrophobic exterior was substituted by dioctadecyldimethyl-ammonium cation, which was ion-paired with the carboxylate. [Pg.167]

We can further describe the polarization, P, according to the different types of dipoles that either already exist or are induced in the dielectric material. The polarization of a dielectric material may be caused by four major types of polarization electronic polarization, ionic (atomic) polarization, orientation polarization, and space-charge (interfacial) polarization. Each type of polarization is shown schematically in Figure 6.24 and will be described in succession. In these descriptions, it will be useful to introduce a new term called the polarizability, a, which is simply a measure of the ability of a material to undergo the specific type of polarization. [Pg.566]

Indeed, it is endothermic by over 130 kJmoU This documents that the polar/ionic bond between magnesium and oxygen is exceptionally strong, a fact we already surmised by the vigor of the reaction of Grignard reagents with air and water. [Pg.121]

Glutamic acid has an R group with a polar ionic end (—COO ) that extends outward toward the water solvent, giving the normal disklike shape. Valine has a lipophilic R group, /-propyl (isopropyl), which pulls the portion of protein where it occurs inward away from the water, causing sickling. [Pg.487]

The highly polar ionic character of EDTA limits its oral absorption. Moreover, oral administration may increase lead absorption from the gut. Consequently, EDTA should be administered by intravenous infusion. In patients with normal renal function, EDTA is rapidly excreted by glomerular filtration, with 50% of an injected dose appearing in the urine within 1 hour. EDTA mobilizes lead from soft tissues, causing a marked increase in urinary lead excretion and a corresponding decline in blood lead concentration. In patients with renal insufficiency, excretion of the drug—and its metal-mobilizing effects—may be delayed. [Pg.1241]


See other pages where Ionic polarization is mentioned: [Pg.128]    [Pg.105]    [Pg.281]    [Pg.326]    [Pg.396]    [Pg.233]    [Pg.2]    [Pg.482]    [Pg.30]    [Pg.191]    [Pg.50]    [Pg.246]    [Pg.292]    [Pg.18]    [Pg.219]    [Pg.113]    [Pg.144]    [Pg.211]    [Pg.140]    [Pg.130]    [Pg.303]    [Pg.123]    [Pg.2]    [Pg.158]    [Pg.161]   
See also in sourсe #XX -- [ Pg.566 , Pg.567 , Pg.568 , Pg.569 , Pg.570 , Pg.652 , Pg.654 ]

See also in sourсe #XX -- [ Pg.531 ]




SEARCH



Ionic polarity

© 2024 chempedia.info