Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interpretation layer

Data analysis and interpretation of electrical resistivity data may be limited because (1) resistivity values may be associated with any one of several geologic units (i.e. a silty sand unit may have similar resistivity values as a sand unit saturated with salt water) (2) thin beds of lower resistivity will be masked when they are sandwiched between two layers of higher resistivity and (3) the interpreted layer thickness will be greater than the actual thickness due to the anisotropic nature of the individual layers, which are generally characterized as having greater vertical resistivity values than horizontal (9). [Pg.124]

These results would be interpreted as showing that water breakthrough has occurred earlier in layer B than in the other layers, which may give reason to shut off this layer (as discussed below). The lack of production from layer C may indicate ineffective perforation, in which case the interval may be re-perforated. The lack of production may be because layer C has a very low permeability, in which case little recovery would be expected from this layer. [Pg.336]

By determining the depth of the bars using a eovermeter for the near surface bars (to 50 mm) and radar for up to 3 layers of bars (to 200 mm), it is only necessary to make one radiograph at a given loeation. In addition the radar will give usefiil information about the number and spacing of the bars. As described above, the eovermeter is used as a reference in establishing a baseline for radar interpretation. [Pg.1001]

Figure V-8 illustrates that there can be a pH of zero potential interpreted as the point of zero charge at the shear plane this is called the isoelectric point (iep). Because of specific ion and Stem layer adsorption, the iep is not necessarily the point of zero surface charge (pzc) at the particle surface. An example of this occurs in a recent study of zircon (ZrSi04), where the pzc measured by titration of natural zircon is 5.9 0.1... Figure V-8 illustrates that there can be a pH of zero potential interpreted as the point of zero charge at the shear plane this is called the isoelectric point (iep). Because of specific ion and Stem layer adsorption, the iep is not necessarily the point of zero surface charge (pzc) at the particle surface. An example of this occurs in a recent study of zircon (ZrSi04), where the pzc measured by titration of natural zircon is 5.9 0.1...
The treatment may be made more detailed by supposing that the rate-determining step is actually from species O in the OHP (at potential relative to the solution) to species R similarly located. The effect is to make fi dependent on the value of 2 and hence on any changes in the electrical double layer. This type of analysis has permitted some detailed interpretations to be made of kinetic schemes for electrode reactions and also connects that subject to the general one of this chapter. [Pg.214]

The power of optical spectroscopies is that they are often much better developed than their electron-, ion- and atom-based counterparts, and therefore provide results that are easier to interpret. Furtlienuore, photon-based teclmiques are uniquely poised to help in the characterization of liquid-liquid, liquid-solid and even solid-solid interfaces generally inaccessible by other means. There has certainly been a renewed interest in the use of optical spectroscopies for the study of more realistic systems such as catalysts, adsorbates, emulsions, surfactants, self-assembled layers, etc. [Pg.1779]

Gerisoher H 1990 On the interpretation of photoeleotroohemioal experiments with passive layers on metals Corr. Sc/. 31 81... [Pg.1953]

A further complication which not infrequently appears is the occurrence of a phase transition within the adsorbed film. Detailed investigation of a number of step-like isotherms by Rouquerol, Thorny and Duval, and by others has led to the discovery of a kink, or sub-step within the first riser, which has been interpreted in terms of a two-dimensional phase change in the first molecular layer. [Pg.89]

Any interpretation of the Type I isotherm must account for the fact that the uptake does not increase continuously as in the Type II isotherm, but comes to a limiting value manifested in the plateau BC (Fig. 4.1). According to the earlier, classical view, this limit exists because the pores are so narrow that they cannot accommodate more than a single molecular layer on their walls the plateau thus corresponds to the completion of the monolayer. The shape of the isotherm was explained in terms of the Langmuir model, even though this had initially been set up for an open surface, i.e. a non-porous solid. The Type I isotherm was therefore assumed to conform to the Langmuir equation already referred to, viz. [Pg.197]

Similarity Variables The physical meaning of the term similarity relates to internal similitude, or self-similitude. Thus, similar solutions in boundaiy-layer flow over a horizontal flat plate are those for which the horizontal component of velocity u has the property that two velocity profiles located at different coordinates x differ only by a scale factor. The mathematical interpretation of the term similarity is a transformation of variables carried out so that a reduction in the number of independent variables is achieved. There are essentially two methods for finding similarity variables, separation of variables (not the classical concept) and the use of continuous transformation groups. The basic theoiy is available in Ames (see the references). [Pg.457]

Elastic recoil spectrometry (ERS) is used for the specific detection of hydrogen ( H, H) in surface layers of thickness up to approximately 1 pm, and the determination of the concentration profile for each species as a function of depth below the sample s surfece. When carefully used, the technique is nondestructive, absolute, fast, and independent of the host matrix and its chemical bonding structure. Although it requires an accelerator source of MeV helium ions, the instrumentation is simple and the data interpretation is straightforward. [Pg.488]

Though a powerfiil technique, Neutron Reflectivity has a number of drawbacks. Two are experimental the necessity to go to a neutron source and, because of the extreme grazing angles, a requirement that the sample be optically flat over at least a 5-cm diameter. Two drawbacks are concerned with data interpretation the reflec-tivity-versus-angle data does not directly give a a depth profile this must be obtained by calculation for an assumed model where layer thickness and interface width are parameters (cf., XRF and VASE determination of film thicknesses. Chapters 6 and 7). The second problem is that roughness at an interface produces the same effect on specular reflection as true interdiffiision. [Pg.646]

Despite many publications on carbynes, their existence has not been universally accepted and the literature has been characterised by conflicting claims and counter claims [e.g., 27-29]. This is particularly tme of meteoritic carbynes. An interesting account of die nature of elemental carbon in interstellar dust (including diamond, graphite and carbynes) was given by Pillinger [30]. Reitmeijer [31] has re-interpreted carbyne diffraction data and has concluded that carbynes could be stratified or mixed layer carbons with variable heteroelement content (H,0,N) rather than a pure carbon allotrope. [Pg.8]

The study of acid-base interaction is an important branch of interfacial science. These interactions are widely exploited in several practical applications such as adhesion and adsorption processes. Most of the current studies in this area are based on calorimetric studies or wetting measurements or peel test measurements. While these studies have been instrumental in the understanding of these interfacial interactions, to a certain extent the interpretation of the results of these studies has been largely empirical. The recent advances in the theory and experiments of contact mechanics could be potentially employed to better understand and measure the molecular level acid-base interactions. One of the following two experimental procedures could be utilized (1) Polymers with different levels of acidic and basic chemical constitution can be coated on to elastomeric caps, as described in Section 4.2.1, and the adhesion between these layers can be measured using the JKR technique and Eqs. 11 or 30 as appropriate. For example, poly(p-amino styrene) and poly(p-hydroxy carbonyl styrene) can be coated on to PDMS-ox, and be used as acidic and basic surfaces, respectively, to study the acid-base interactions. (2) Another approach is to graft acidic or basic macromers onto a weakly crosslinked polyisoprene or polybutadiene elastomeric networks, and use these elastomeric networks in the JKR studies as described in Section 4.2.1. [Pg.134]

Electromagnetic (EM) Conductivity Measures the electrical conductivity of materials in microohms over a range of depths determined by the spacing and orientation of the transmitter and receiver coils, and the nature of the earth materials. Delineates areas of soil and groundwater contamination and the depth to bedrock or buried objects. Surveys to depths of SO to 100 ft are possible. Power lines, underground cables, transformers and other electrical sources severely distort the measurements. Low resistivities of surficial materials makes interpretation difficult. The top layers act as a shunt to the introduction of energy info lower layers. Capabilities for defining the variation of resistivity with depth are limited. In cases where the desired result is to map a contaminated plume in a sand layer beneath a surficial clayey soil in an area of cultural interference, or where chemicals have been spilled on the surface, or where clay soils are present it is probably not worth the effort to conduct the survey. [Pg.124]


See other pages where Interpretation layer is mentioned: [Pg.555]    [Pg.441]    [Pg.254]    [Pg.555]    [Pg.441]    [Pg.254]    [Pg.183]    [Pg.587]    [Pg.1638]    [Pg.1708]    [Pg.1836]    [Pg.1933]    [Pg.457]    [Pg.279]    [Pg.431]    [Pg.539]    [Pg.196]    [Pg.394]    [Pg.1826]    [Pg.30]    [Pg.35]    [Pg.38]    [Pg.210]    [Pg.247]    [Pg.274]    [Pg.364]    [Pg.506]    [Pg.728]    [Pg.115]    [Pg.247]    [Pg.348]    [Pg.232]    [Pg.408]    [Pg.111]    [Pg.1165]    [Pg.124]    [Pg.30]    [Pg.52]   
See also in sourсe #XX -- [ Pg.254 ]




SEARCH



© 2024 chempedia.info