Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silver nitrate catalyst

There are very few homolytic reactions on triazolopyridines. A suggestion that the ring opening reactions of compound 1 involved free radical intermediates is not substantiated (98T9785). The involvement of radical intermediates in additions to ylides is discussed in Section IV.I. The reaction of radicals with compound 5 and its 1-substituted derivatives gives 4-substituted compounds such as 234 (96ZOK1085). A more detailed study of the reaction of the 1-methyl and 1-phenyl derivatives with r-butanol and ammonium persulfate produced 4-methyl substitution with a silver nitrate catalyst, and the side chain alcohol 235 without the catalyst (96ZOK1412). [Pg.42]

Discussion. Chromium (III) salts are oxidised to dichromate by boiling with excess of a persulphate solution in the presence of a little silver nitrate (catalyst). The excess of persulphate remaining after the oxidation is complete is destroyed by boiling the solution for a short time. The dichromate content of the resultant solution is determined by the addition of excess of a standard iron(II) solution and titration of the excess of the latter with standard 0.02 M potassium dichromate. [Pg.377]

Preparation of diazoketones and their rearrangements during hydrolysis (method 271) and alcoholysis (method 295) are discussed elsewhere. Ammonolysis of diazoketones leads to amides of acids containing one more carbon atom than the original acyl halide. Halogen atoms may be present in a remote position on an aliphatic chain. The reaction is carried out by heating the diazoketone in alcohol or dioxane solution with aqueous ammonia in the presence of silver oxide or silver nitrate catalysts. Substituted acetanilides are formed when aniline is used in place of ammonia. ... [Pg.738]

Ammonium hexanitratocerate(IV) as a standard oxidant for reactions at room temperature has been developed for several substances. " Oxalate can be titrated with Ce(IV) in 0.5 M HNO3 with an iodide catalyst mandelic acid at a lower acid concentration, 0.1 MHNO3 Mn(II) with excess Ce(TV) in 0.5 to 2M HNO3 with silver nitrate catalyst hydrazine or isonicotinic acid in HCl-KBr solution and As(III) in HCl, HNO3, or H2SO4 solution with a trace of iodine as catalyst. [Pg.346]

Chromium oxide (Cr203). Up to 0.1% colorimetrically with diphenylcarbizide at 540 nm. Above 0.1% but as a minor constituent, colorimetrically with EDTA at 550 nm. As a major constituent by oxidation to dichromate by peroxodisulfuric acid using a silver nitrate catalyst, destruction of permanganate with HCl and titration against ferrous ammonium sulfate using diphenylamine-4-sulfonate indicator. [Pg.506]

Rearrangement of the diazo ketone, with loss of nitrogen, in the presence of suitable reagents and a catalyst (colloidal silver, silver oxide, or silver nitrate in the presence of ammonia solution). An acid is formed In the presence of water, an amide results when ammonia or an amine is used, and an ester is produced in the presence of an alcohol ... [Pg.903]

Catalysts. Silver and silver compounds are widely used in research and industry as catalysts for oxidation, reduction, and polymerization reactions. Silver nitrate has been reported as a catalyst for the preparation of propylene oxide (qv) from propylene (qv) (58), and silver acetate has been reported as being a suitable catalyst for the production of ethylene oxide (qv) from ethylene (qv) (59). The solubiUty of silver perchlorate in organic solvents makes it a possible catalyst for polymerization reactions, such as the production of butyl acrylate polymers in dimethylformamide (60) or the polymerization of methacrylamide (61). Similarly, the solubiUty of silver tetrafiuoroborate in organic solvents has enhanced its use in the synthesis of 3-pyrrolines by the cyclization of aHenic amines (62). [Pg.92]

Epoxides are normally hydrogenated in preference to saturated ketones but double bonds are usually reduced under these conditions. It is possible in some cases to selectively cleave an epoxide without saturating double bonds by the use of the deactivated catalysts recommended for the partial reduction of acetylenes (see section IV) or by the addition of silver nitrate to the palladium-catalyzed reaction mixture. " ... [Pg.138]

Chemical reduction is used extensively nowadays for the deposition of nickel or copper as the first stage in the electroplating of plastics. The most widely used plastic as a basis for electroplating is acrylonitrile-butadiene-styrene co-polymer (ABS). Immersion of the plastic in a chromic acid-sulphuric acid mixture causes the butadiene particles to be attacked and oxidised, whilst making the material hydrophilic at the same time. The activation process which follows is necessary to enable the subsequent electroless nickel or copper to be deposited, since this will only take place in the presence of certain catalytic metals (especially silver and palladium), which are adsorbed on to the surface of the plastic. The adsorbed metallic film is produced by a prior immersion in a stannous chloride solution, which reduces the palladium or silver ions to the metallic state. The solutions mostly employed are acid palladium chloride or ammoniacal silver nitrate. The etched plastic can also be immersed first in acidified palladium chloride and then in an alkylamine borane, which likewise form metallic palladium catalytic nuclei. Colloidal copper catalysts are of some interest, as they are cheaper and are also claimed to promote better coverage of electroless copper. [Pg.436]

The silver catalyst was prepared by reducing silver oxide. The silver oxide used was prepared by adding a solution of potasium hydroxide to an aqueous solution of silver nitrate. A small amount of 0.3% K SO solution was added to the silver oxide powder as a promoter and, after mixing, was dried at 105°C for 24hr in a dark room. This was coated on a-A O of 20-42 mesh in the presence of a small amount of ethanol until the sample reached a size of 12-14 mesh. After the ethanol in the silver oxide powder had been completely vaporized in air at room temperature, the sample was reduced in a reactor with a flow of for 12 hr at 50°C and successively for 12 hr at 100°C. The composition of the catalyst so prepared was 206.0 g-Ag, 1.132 g-K S0 / 5 3.5 g-A O. The BET surface area was 0.3 m / g-A.g. HThe constant activity of this catalyst was obtained by flowing the mixture of 5% C H, 20% 0 and 75% He at 91°C for 48 hr. 1... [Pg.211]

In the Breathalyzer test, the subject blows into a tube connected to a vial. The exhaled air collects in the vial, which already contains a mixture of sulfuric acid, potassium dichromate, water, and the catalyst silver nitrate. The alcohol reacts with the dichromate ion in the following redox reaction. [Pg.491]

Silver nitrate is probably the most important silver salt. It is used to make most silver salts. It is used in photographic film, indelible ink, and hair dyeing. Other uses are in making silver mirrors, etching ivory, and as a catalyst... [Pg.841]

If the oxidation of graphite by nitric acid is conducted in the presence of catalysts, such as vanadic acid or silver nitrate, mellitic acid, Cl2012H.6, is obtd-... [Pg.768]

Thoria catalyst, 735 Tischenko reactions, 318 Tollen s ammoniacal silver nitrate reagent, 330, 1061, 1074 p-Tolualdehyde, 689, 697 o-Toluamide, 798 Toluene, 510, 516, 615 purification of, 173, 174 separation from benzene, 231 p-Toluenesulphinic acid, 821, 826 o-Toluenesulphonamide, 821, 824 p-Toluenesulphonamide, 820, 823 p-Toluenesulphonates, 422, 437, 650, 684 ... [Pg.1187]

Rb+- and Cs+-impregnated X zeolites were found to exhibit the highest activity and selectivity in these transformations. A CsX zeolite treated with boric acid, for example, gave better than 50% overall selectivity in the formation of styrene and ethylbenzene (410°C, 60% conversion).275 Treatment of these catalysts with copper or silver nitrate resulted in further improvements in catalyst performance.276 The promoting role of these metals was suggested to be their involvement in dehydrogenation of methyl alcohol. [Pg.254]

In addition to the analysis of the thermal stability of the perchloric acid organic reaction media mixtures, a procedure was worked out to determine the fate of the perchloric acid by chlorine analysis of the batch, effluent streams, etc. Preliminary analyses on selected process samples showed no tendency for perchloric acid to concentrate in recycle material and therefore build up in the reactor. A total of less than 1% of the initial charge of perchloric acid (total chlorides calculated as perchloric acid) was found in the combined recovered acid-ester and olefin fractions. Less than 1 % of the initial charge of perchloric acid was found in the finished ester. The analytical method used was an oxygen bomb decomposition, followed by titration of chlorides with 0.0liV silver nitrate, using a recording automatic titrator. The eventual fate of the perchloric acid catalyst was... [Pg.79]

In aqueous solution, manganous salts are oxidised to manganese dioxide,6 and if silver nitrate is present as catalyst, to permanganate 0 the latter change constitutes Marshall s reaction. Chromium solutions in a similar manner give rise to chromate,7 even without a catalyst. Ferrous and cerous salts are converted into ferric and ceric salts, respectively, and phosphites are oxidised to phosphates. [Pg.185]

The oxidation of arsine may be accomplished by means of the halogen oxyacids and their salts,8 although not so readily as with the halogens themselves. Hypochlorites and hypobromites cause complete oxidation to arsenic acid, but side reactions are liable to occur, especially if the gas is present in excess. Chloric add slowly oxidises arsine to arsenious acid a trace of silver nitrate catalyses the reaction. Chlorates are quite inactive. More complete oxidation results with solutions of bromic acid and bromates, iodic acid and iodates, especially in the presence of catalysts. The reactions are of the type represented by the equation8... [Pg.90]


See other pages where Silver nitrate catalyst is mentioned: [Pg.117]    [Pg.117]    [Pg.390]    [Pg.180]    [Pg.202]    [Pg.112]    [Pg.458]    [Pg.1453]    [Pg.305]    [Pg.533]    [Pg.407]    [Pg.5]    [Pg.397]    [Pg.1064]    [Pg.73]    [Pg.117]    [Pg.55]    [Pg.680]    [Pg.132]    [Pg.533]    [Pg.560]    [Pg.773]    [Pg.273]    [Pg.8]    [Pg.1195]    [Pg.672]    [Pg.390]    [Pg.119]    [Pg.122]   
See also in sourсe #XX -- [ Pg.117 , Pg.118 , Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 , Pg.127 ]




SEARCH



Nitrations silver® nitrate

Silver catalyst

Silver nitrate

© 2024 chempedia.info