Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interface membrane-peptide

Typically, the insertion induces sharp variation of the membrane profile at the distances 0.5-1.0nm from the membrane-peptide interface [79-82]. The steepness of this perturbation indicates that the short-A, behavior of membrane moduli must be important in the estimates of the elastic energy. In addition, a peptide inserted in a membrane almost certainly perturbs the membrane s elastic moduli in the immediate vicinity of the inclusion. Both these effects, membrane nonlocality and nonuniform modification of elastic properties by insertions, might play an important role in resolving the contradiction between the local calculations [80] and the experimental data for the mean lifetime of a gramicidin channel [81,109,110]. ... [Pg.94]

The structural analysis of membrane-associated peptides comprises two steps (a) the elucidation of the three-dimensional fold of the peptide and (b) the determination of the membrane-peptide interface. We will use our results gained for the 36 amino acid residue neuropeptide Y (NPY) [83] to demonstrate the approaches that can be used. NPY regulates important pharmacological functions such as blood pressure, food intake or memory retention and hence has been subject of many investigations (for a review see Ref. [84]). It targets the so-called Y receptors that belong to the class of seven transmembrane receptors coupled to G-proteins (GPCRs). [Pg.110]

Section III describes the mechanical influence that a membrane can have on channel stabilization, focusing on simple physical models used to understand the mechanism of membrane-peptide interaction. We describe the elastic interaction between a membrane and an inserted peptide, focusing on GA, and first provide a brief overview of the basics of the elastic theory of membranes, demonstrating the formal equivalence of these issues to a classical problem in mechanical engineering. We then consider different descriptions of the interaction of a membrane with an inclusion and follow with a discussion of lipids influences on channel lifetimes. Finally, we describe a new perspective for describing the membrane-inclusion interaction. It emphasizes the inclusion-induced perturbation of membrane elastic constants at the lipid-peptide interface. [Pg.497]

At the N-terminal end of the f loop, near the membrane lipid interface, there is an autoinhibitory domain, rich in both basic and hydrophobic residues and consisting of a 20-aminoacid sequence (219-238). This aminoacid sequence, named exchange inhibitory peptide (XDP), is involved in NCX activity regulation. [Pg.802]

Na+-dependent inactivation. There is a sequence of 20-aminoacids (219-23 8), located in the intracellular f loop near the membrane lipid interface, that seems to be involved in the Na+-dependent inactivation. This autoinhibitory 20-aminoacid sequence might interact with another portion of the f loop (562-679) producing NCX inhibition. In accordance with this view, the synthetic peptide provided with the same sequence of XIP region blocks NCX activity. [Pg.804]

Considering only the lipid phase as the transport pathway for the peptide, as the solute enters and diffuses across the membrane it will encounter a number of different microenvironments. The first is the aqueous membrane interface (Fig. 23). In this region, the hydrated polar headgroups of the membrane phospholipids separate the aqueous phase from the apolar membrane interior. It has been shown that this region is capable of satisfying up to 70% of the hydrophobic effect... [Pg.278]

In this model, one can argue that a peptide must have both an affinity for the interface (favorable n-octanol partition coefficient) and small desolvation energy (favorable A log PC) in order to efficiently cross a cell membrane. On the other hand, this model also predicts that a peptide with a large n-octanol/water partition coefficient and large desolvation energy, due to a significant number of polar groups, should adsorb and remain at the membrane interface. Both of these predicted events have been observed in the laboratory. [Pg.293]

It is emphasized that revealing the dynamics as well as the structure (or conformation) based on several types of spin-relaxation times is undoubtedly a unique and indispensable means, only available from NMR techniques at ambient temperature of physiological significance. Usually, the structure data themselves are available also from X-ray diffraction studies in a more refined manner. Indeed, better structural data can be obtained at lower temperature by preventing the unnecessary molecular fluctuations, which are major subjects in this chapter, since structural data can be seriously deteriorated for domains where dynamics are predominant even in the 2D or 3D crystalline state or proteoliposome at ambient temperature. It should be also taken into account that the solubilization of membrane proteins in detergents is an alternative means to study structure in solution NMR. However, it is not always able faithfully to mimick the biomembrane environment, because the interface structure is not always the same between the bilayer and detergent system. This typically occurs in the case of PLC-81(1-140) described in Section 4.2.4 and other types of peptide systems. [Pg.80]

Yamashita Y, Masum SM, Tanaka T, Tamba Y, Yamazaki M (2002) Shape changes of giant unilamellar vesicles of phosphatidylcholine induced by a de novo designed peptide interacting with their membrane interface. Langmuir 18 9638-9641. [Pg.372]

Most of the above membrane-oriented studies were carried out for peptides in multilayer systems that were collapsed or transferred onto a sample cell surface. An alternative and very interesting way to study membrane systems is by IRRAS (infrared reflection absorption spectroscopy) at the air-water interface. In this way, unilamellar systems can be studied as a function of surface pressure and under the influence of various membrane proteins and peptides added. Mendelsohn et al.[136] have studied a model series of peptides, [K2(LA) ] (n = 6, 8, 10, 12), in nonaqueous (solution), multilamellar (lipid), and unilamellar (peptide-IRRAS) conditions. In the multilamellar vesicles these peptides are predominantly helical in conformation, but as peptide only monolayers on a D20 subphase the conformation is (1-sheet like, at least initially. For different lengths, the peptides show variable surface pressure sensitivity to development of some helical component. These authors further use their IR data to hypothesize the existence of the less-usual parallel (i-sheet conformation in these peptides. A critical comparison is available for different secondary structures as detected using the IRRAS data for peptides on H20 and D20 subphasesJ137 ... [Pg.732]

Desfosses et al. [328] measured binding of oxyphenyl betazone to the N-ter-minal peptic fragment of human serum albumin (HSA) in aqueous buffer and AOT/isooctane-RMs. The peptide affinity for the drug did not decrease in RMs. The interactions of HSA at membrane mimetic interface and its subsequent unfolding was suggested to constitute a drug release facilitating mechanism. [Pg.173]

Lactic streptococci initiate casein degradation through the action of cell wall-associated and cell membrane-associated proteinases and peptidases. Small peptides are taken into the cell and hydrolyzed to their constituent amino acids by intracellular peptidases (Law and Sharpe 1978). Peptides containing four to seven residues can be transported into the cell by S. cremoris (Law et al. 1976B). S. lactis and S. cremoris have surface-bound peptidases and thus are not totally dependent on peptide uptake for protein use (Law 1979B). Some surface peptidases of S. cremoris are located in the cell membrane, whereas others are located at the cell wall-cell membrane interface (Exterkate 1984). Lactic streptococci have at least six different aminopeptidase activities, and can be divided into three groups based on their aminopeptidase profiles (Kaminogawa et al 1984). [Pg.677]

The high molar mass species reside mostly in the aqueous phase with a number of peptide groups residing in the oil/water interface [293]. Although these latter surfactants are less effective at reducing interfacial tension, they can form a viscoelastic membrane-like film around oil droplets or air bubbles. These tend to be used in the preparation of, for example, O/W emulsions. These trends are by no means exclusive, mixtures are the norm and competitive adsorption is prevalent. Caseinate, one of the most commonly used surfactants in the food industry, is itself a mixture of interacting proteins of varying surface activity [814],... [Pg.303]

The arrangement of the proteins within the membrane seems to depend to some extent on the electrostatic surface potential and interface permittivity. It is influenced by electrostatic interaction between the proteins, polar head groups of the phospholipid and ions within the aqueous medium of the membrane surface. This can be affected by exogenous molecules such as drugs. Phospholipid-induced conformational change in intestinal calcium-binding protein in the absence and presence of Ca2+ has been described [37]. There is, however, no doubt that hydrophobic interactions between peptides and membrane interfaces play an important role. A general frame-... [Pg.10]


See other pages where Interface membrane-peptide is mentioned: [Pg.72]    [Pg.513]    [Pg.251]    [Pg.378]    [Pg.1284]    [Pg.130]    [Pg.368]    [Pg.293]    [Pg.102]    [Pg.100]    [Pg.247]    [Pg.422]    [Pg.100]    [Pg.111]    [Pg.111]    [Pg.305]    [Pg.185]    [Pg.42]    [Pg.214]    [Pg.126]    [Pg.475]    [Pg.753]    [Pg.89]    [Pg.118]    [Pg.126]    [Pg.100]    [Pg.39]    [Pg.91]    [Pg.397]    [Pg.241]    [Pg.11]    [Pg.324]    [Pg.328]    [Pg.89]    [Pg.143]    [Pg.134]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Membrane interface

Membrane peptides

© 2024 chempedia.info