Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interaction heterogeneous

Fe (or As) is lost from an ammoniacal buffer solution containing As(V) or As(III) when FeCls is added to this solution, the Fe(III) must be stabilized in solution by the formation of an Fe-As complex. The solubility of the complex formed between As(V) and Fe(III) decreases with decreasing pH, while the solubility of the complex formed between As(III) and Fe(III) decreases with increasing pH. In addition, both As(V) and As(III) interact heterogeneously with precipitated Fe(0H)3 some As is removed from solution but some Fe also redissolves into solution. [Pg.93]

These considerations have their consequences regarding the interpretation of experimental data should it be done in terms of isotherms or in equations of state Preferably both should be considered, but when specific features are under study a choice may have to be made. For instance, surface heterogeneity shows up very strongly in the shapes of the Isotherms (sec. 1.7) but very little in the equation of state in the model case of local Langmuir isotherms without lateral interaction heterogeneity is not seen at all in the equation of state (because the energy is not considered and the entropy not affected) whereas the isotherm shape is dramatically Influenced. On the other hand, for homogeneous model surfaces equations of state may be more suited to observe subtle distinctions in lateral mobility or lateral interaction. [Pg.73]

In summary, the recent work of Kramers, Wannier, Onsager, and Kaufmann provides an exact solution of two-dimensional nearest neighbor problems of the present idealized type but approximate approaches, for example the quasi-chemical method, must still be used in taking into account second and higher neighbor interactions, heterogeneous surfaces, etc. [Pg.224]

The scheme of dispersion effects displayed in engineering materials of different structures was considered and an analysis of the causes of their occurrence was performed in our work. The spectrum of structural noise is considered as an element of unified spectral characteristics, reflected interaction of the ultrasonic field with given parameters and heterogeneous medium... [Pg.733]

All gases below their critical temperature tend to adsorb as a result of general van der Waals interactions with the solid surface. In this case of physical adsorption, as it is called, interest centers on the size and nature of adsorbent-adsorbate interactions and on those between adsorbate molecules. There is concern about the degree of heterogeneity of the surface and with the extent to which adsorbed molecules possess translational and internal degrees of freedom. [Pg.571]

Brunauer (see Refs. 136-138) defended these defects as deliberate approximations needed to obtain a practical two-constant equation. The assumption of a constant heat of adsorption in the first layer represents a balance between the effects of surface heterogeneity and of lateral interaction, and the assumption of a constant instead of a decreasing heat of adsorption for the succeeding layers balances the overestimate of the entropy of adsorption. These comments do help to explain why the model works as well as it does. However, since these approximations are inherent in the treatment, one can see why the BET model does not lend itself readily to any detailed insight into the real physical nature of multilayers. In summary, the BET equation will undoubtedly maintain its usefulness in surface area determinations, and it does provide some physical information about the nature of the adsorbed film, but only at the level of approximation inherent in the model. Mainly, the c value provides an estimate of the first layer heat of adsorption, averaged over the region of fit. [Pg.653]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

The way in which these factors operate to produce Type III isotherms is best appreciated by reference to actual examples. Perhaps the most straightforward case is given by organic high polymers (e.g. polytetra-fluoroethylene, polyethylene, polymethylmethacrylate or polyacrylonitrile) which give rise to well defined Type III isotherms with water or with alkanes, in consequence of the weak dispersion interactions (Fig. S.2). In some cases the isotherms have been measured at several temperatures so that (f could be calculated in Fig. 5.2(c) the value is initially somewhat below the molar enthalpy of condensation and rises to qi as adsorption proceeds. In Fig. 5.2(d) the higher initial values of q" are ascribed to surface heterogeneity. [Pg.249]

At low adsorbate loadings, the differential heat of adsorption decreases with increasing adsorbate loadings. This is direct evidence that the adsorbent surface is energetically heterogeneous, ie, some adsorption sites interact more strongly with the adsorbate molecules. These sites are filled first so that adsorption of additional molecules involves progressively lower heats of adsorption. [Pg.273]

Chromium compounds decompose primary and secondary hydroperoxides to the corresponding carbonyl compounds, both homogeneously and heterogeneously (187—191). The mechanism of chromium catalyst interaction with hydroperoxides may involve generation of hexavalent chromium in the form of an alkyl chromate, which decomposes heterolyticaHy to give ketone (192). The oxidation of alcohol intermediates may also proceed through chromate ester intermediates (193). Therefore, chromium catalysis tends to increase the ketone alcohol ratio in the product (194,195). [Pg.343]

By 1980, research and development shifted from relatively inexpensive surfactants such as petroleum sulfonates to more cosdy but more effective surfactants tailored to reservoir and cmde oil properties. Critical surfactant issues are performance in saline injection waters, adsorption on reservoir rock, partitioning into reservoir cmde oil, chemical stabiUty in the reservoir, interactions with the mobiUty control polymer, and production problems caused by resultant emulsions. Reservoir heterogeneity can also greatly reduce process effectiveness. The decline in oil prices in the early 1980s halted much of the work because of the relatively high cost of micellar processes. [Pg.194]

Sorption of nonionic, nonpolar hydrophobic compounds occurs by weak attractive interactions such as van der Waals forces. Net attraction is the result of dispersion forces the strength of these weak forces is about 4 to 8 kj/mol ( 1 2 kcal/mol). Electrostatic interactions can also be important, especially when a molecule is polar in nature. Attraction potential can develop between polar molecules and the heterogeneous sod surface that has ionic and polar sites, resulting in stronger sorption. [Pg.221]

Allyl Complexes. Allyl complexes of thorium have been known since the 1960s and are usually stabilized by cyclopentadienyl ligands. AEyl complexes can be accessed via the interaction of a thorium haUde and an aHyl grignard. This synthetic method was utilized to obtain a rare example of a naked aHyl complex, Th(Tj -C2H )4 [144564-74-9] which decomposes at 0°C. This complex, when supported on dehydroxylated y-alumina, is an outstanding heterogeneous catalyst for arene hydrogenation and rivals the most active platinum metal catalysts in activity (17,18). [Pg.43]

Dehydrogenation, Ammoxidation, and Other Heterogeneous Catalysts. Cerium has minor uses in other commercial catalysts (41) where the element s role is probably related to Ce(III)/Ce(IV) chemistry. Styrene is made from ethylbenzene by an alkah-promoted iron oxide-based catalyst. The addition of a few percent of cerium oxide improves this catalyst s activity for styrene formation presumably because of a beneficial interaction between the Fe(II)/Fe(III) and Ce(III)/Ce(IV) redox couples. The ammoxidation of propjiene to produce acrylonitrile is carried out over catalyticaHy active complex molybdates. Cerium, a component of several patented compositions (42), functions as an oxygen and electron transfer through its redox couple. [Pg.371]

Analysis of such a correlation may reveal the significant variables and interactions, and may suggest some model, say of the L-H type, that could be analyzed in more detail by a regression process. The variables Xi could be various parameters of heterogeneous processes as well as concentrations. An application of this method to isomerization of /i-pentane is given by Kittrel and Erjavec (Ind. Eng. Chem. Proc. Des. Dev., 7,321 [1968]). [Pg.707]

There was studied dependence of sorption rate values of microamounts high listed elements from time of their contact with sorbents, pH media and means of equilibrium concentration. It is shown that owing to exchange of sorbents surface characteristics, its hydrating rate value and heterogeneity of sorbate and hydrolyzed forms of metals investigated interaction with surface can simultaneously proceed on several mechanisms. The contributions of various factors into adsorption of elements-analogues are depended from sorption conditions and nature of sorbent surface. [Pg.265]


See other pages where Interaction heterogeneous is mentioned: [Pg.634]    [Pg.410]    [Pg.634]    [Pg.246]    [Pg.319]    [Pg.315]    [Pg.21]    [Pg.634]    [Pg.410]    [Pg.634]    [Pg.246]    [Pg.319]    [Pg.315]    [Pg.21]    [Pg.182]    [Pg.467]    [Pg.634]    [Pg.658]    [Pg.660]    [Pg.698]    [Pg.701]    [Pg.724]    [Pg.283]    [Pg.910]    [Pg.920]    [Pg.1623]    [Pg.1874]    [Pg.2816]    [Pg.2830]    [Pg.2837]    [Pg.87]    [Pg.490]    [Pg.285]    [Pg.29]    [Pg.249]    [Pg.281]    [Pg.411]    [Pg.246]    [Pg.1508]    [Pg.254]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Heterogeneous catalysis surfaces and interactions with adsorbates

Heterogeneous process complex nonlinear interaction

Surface interactions, heterogeneous

© 2024 chempedia.info