Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiation metal complexes

Initial metal complex Reagents and conditions Product hydride Refs. [Pg.411]

These rate constants are dependent on ligand structure and, for the disjunctive pathway, on pH. The rate constant for the disjunctive pathway is determined by the rate constant for reaction of the incoming metal with the steady-state concentration of the free or protonated ligand intermediate. It is thus inversely proportional to the conditional equilibrium stability constant for the initial metal complex and directly proportional to the formation rate constant for the final metal complex. The adjunctive rate constant is more dependent on ligand structure since either formation or dissociation of the intermediate dinuclear complex can be rate-limiting. Specifically ... [Pg.154]

In the second method a passive polymer is used that can react with an initial metal complex after only one ligand is lost (in our systems it is the CO group). Such polymers [e.g., PS (polystyrene), PB (polybutadiene), styrene-butadiene copolymers, etc.] being gradually added to the solution of the inert solvent of the initial complex at the proper temperature leads to the ligand separation, an anion complex bounding with the passive polymer followed by its thermal decomposition. [Pg.96]

In solutions of polymers (PVP, PEG, PDDA) complete or partial neutralization of the negative charge of the anionic form of the initial metal complex was seem Similar behavior was observed for metal complexes comprising micelles (SDS). In the case of micellar system CTABr lanthanide bis-phthalocyanine predominantly existed in the anionic form. [Pg.119]

In most of these photocatalyzed reactions, no hydrosilylation products have been formed under controlled conditions in the absence of either UV radiation or a catalyst. This proves that an active catalyst is photogenerated from the initial metal complex. [Pg.1277]

A variety of different geometry orientations are accessible for other heteroatom groups as well (Scheme 8). Different isomers of the initial metal complex may initiate alternative pathways of multiple bond insertion in the same manner as described earlier (Scheme 7). [Pg.10]

In the initial thiocyanate-complex Hquid—Hquid extraction process (42,43), the thiocyanate complexes of hafnium and zirconium were extracted with ether from a dilute sulfuric acid solution of zirconium and hafnium to obtain hafnium. This process was modified in 1949—1950 by an Oak Ridge team and is stiH used in the United States. A solution of thiocyanic acid in methyl isobutyl ketone (MIBK) is used to extract hafnium preferentially from a concentrated zirconium—hafnium oxide chloride solution which also contains thiocyanic acid. The separated metals are recovered by precipitation as basic zirconium sulfate and hydrous hafnium oxide, respectively, and calcined to the oxide (44,45). This process is used by Teledyne Wah Chang Albany Corporation and Western Zirconium Division of Westinghouse, and was used by Carbomndum Metals Company, Reactive Metals Inc., AMAX Specialty Metals, Toyo Zirconium in Japan, and Pechiney Ugine Kuhlmann in France. [Pg.430]

Dehalogenation of monochlorotoluenes can be readily effected with hydrogen and noble metal catalysts (34). Conversion of -chlorotoluene to Ncyanotoluene is accompHshed by reaction with tetraethyl ammonium cyanide and zero-valent Group (VIII) metal complexes, such as those of nickel or palladium (35). The reaction proceeds by initial oxidative addition of the aryl haHde to the zerovalent metal complex, followed by attack of cyanide ion on the metal and reductive elimination of the aryl cyanide. Methylstyrene is prepared from -chlorotoluene by a vinylation reaction using ethylene as the reagent and a catalyst derived from zinc, a triarylphosphine, and a nickel salt (36). [Pg.53]

Whilst solving some ecological problems of metals micro quantity determination in food products and water physicochemical and physical methods of analysis are employed. Standard mixture models (CO) are necessary for their implementation. The most interesting COs are the ones suitable for graduation and accuracy control in several analysis methods. Therefore the formation of poly functional COs is one of the most contemporary problems of modern analytical chemistry. The organic metal complexes are the most prospective class of CO-based initial substances where P-diketonates are the most appealing. [Pg.405]

The mechanism of the asymmetric alkylation of chiral oxazolines is believed to occur through initial metalation of the oxazoline to afford a rapidly interconverting mixture of 12 and 13 with the methoxy group forming a chelate with the lithium cation." Alkylation of the lithiooxazoline occurs on the less hindered face of the oxazoline 13 (opposite the bulky phenyl substituent) to provide 14 the alkylation may proceed via complexation of the halide to the lithium cation. The fact that decreased enantioselectivity is observed with chiral oxazoline derivatives bearing substituents smaller than the phenyl group of 3 is consistent with this hypothesis. Intermediate 13 is believed to react faster than 12 because the approach of the electrophile is impeded by the alkyl group in 12. [Pg.238]

To examine potentiality of other ylides and their metal complex containing Sb, As, P, Bi, and Se as new novel initiator in polymer synthesis via living radical polymerization. [Pg.380]

Metal complex-organic halide redox initiation is the basis of ATRP. Further discussion of systems in this context will be found in Section 9.4, The kinetics and mechanism of redox and photoredox systems involving transition metal complexes in conventional radical polymerization have been reviewed by Bam ford. [Pg.104]

Inhibitors (Section 5.3), including transition metal complexes and nilroxides, may be used to prepare mono-end-functional polymers. If an appropriate initiator is employed, di-end-functional polymers are also possible. [Pg.381]

Metal complexes may also act as initiators in stable radical-mediated polymerization with the metal complex performing the role of the stable radical. [Pg.484]

Ideally, the metal complex is a catalyst and, in principle, is only required in very small quantities. However, the kinetics of initiation for the systems described to date dictate that relatively large amounts are used and catalyst initiator ratios are typically in the range 1 1 to 1 10. The most commonly used catalysts are metal... [Pg.487]

So-called reverse ATRP has been described where a conventional radical initiator (e.g. AIBN) and a transition metal complex in its Higher oxidation state are used. 85"288 One of the first systems explored was ( uBr- 133 AIBN VI VIA. It is important that the initiator is completely consumed early in the polymerization. The use of peroxide initiators in reverse ATRP can be problematical depending on the catalyst used and the reaction temperature.286 289 The system CuBr2/133/BPO/MMA at 60°C was found to provide no control,286 In ATRP at lower temperatures (40 °C), the system CuCl/133/BPO/MMA was successful though dispersities obtained were relatively broadf89 Radicals are produced from the redox reaction between the catalyst in its reduced form and BPO. [Pg.491]

Transition metal catalysts arc characterized by their redox ehemistry (catalysts can be considered as one electron oxidants/reductants). They may also be categorized by their halogen affinity. While in the initial reports on ATRP (and in most subsequent work) copper266,267 or ruthenium complexes267 were used, a wide range of transition metal complexes have been used as catalysts in ATRP. [Pg.492]

ORl OX w di-Miutyl peroxyoxalalc deactivation by reversible chain transfer and bioinolecular aclivaiion 456 atom transfer radical polymerization 7, 250, 456,457, 458,461.486-98 deactivation by reversible coupling and untmolecular activation 455-6, 457-86 carbon-centered radical-mediated poly nierizaiion 467-70 initiators, inferlers and iriiters 457-8 metal complex-mediated radical polymerization 484... [Pg.605]

The initiating step of the photolysis reaction is the removal of a CO ligand from the metal with generation of a reactive 16e species. The intermediate metal complex is stabilized by an intramolecular oxidative addition of the Si—H bond to the iron center. [Pg.38]

The major problem of these diazotizations is oxidation of the initial aminophenols by nitrous acid to the corresponding quinones. Easily oxidized amines, in particular aminonaphthols, are therefore commonly diazotized in a weakly acidic medium (pH 3, so-called neutral diazotization) or in the presence of zinc or copper salts. This process, which is due to Sandmeyer, is important in the manufacture of diazo components for metal complex dyes, in particular those derived from l-amino-2-naphthol-4-sulfonic acid. Kozlov and Volodarskii (1969) measured the rates of diazotization of l-amino-2-naphthol-4-sulfonic acid in the presence of one equivalent of 13 different sulfates, chlorides, and nitrates of di- and trivalent metal ions (Cu2+, Sn2+, Zn2+, Mg2+, Fe2 +, Fe3+, Al3+, etc.). The rates are first-order with respect to the added salts. The highest rate is that in the presence of Cu2+. The anions also have a catalytic effect (CuCl2 > Cu(N03)2 > CuS04). The mechanistic basis of this metal ion catalysis is not yet clear. [Pg.27]

It is believed [1135,1136] that the decomposition of metal complexes of salicyaldoxime and related ligands is not initiated by scission of the coordination bond M—L, but by cleavage of another bond (L—L) in the chelate ring which has been weakened on M—L bond formation. Decomposition temperatures and values of E, measured by several non-isothermal methods were obtained for the compounds M(L—L)2 where M = Cu(II), Ni(II) or Co(II) and (L—L) = salicylaldoxime. There was parallel behaviour between the thermal stability of the solid and of the complex in solution, i.e. Co < Ni < Cu. A similar parallel did not occur when (L—L) = 2-indolecarboxylic acid, and reasons for the difference are discussed... [Pg.237]

The reaction of ethyl 2,2-diethoxyacrylate with alkynylalkoxycarbene complexes affords 6-ethoxy-2H-2-pyranylidene metal complexes [92] (Scheme 48). The mechanism that explains this process is initiated by a [2+2] cycloaddition reaction (see Sect. 2.3), followed by a cyclobutene ring opening to generate a tetracarbonylcarbene complex. This complex can be isolated and on standing for one day at room temperature renders the final 6-ethoxy-2Ff-pyranylidene pentacarbonyl complex. This last transformation requires the formal transfer of one carbonyl group and one proton from the diethoxy methylene moiety to the metal and to the C3 2H-pyranylidene ring, respectively, with concomitant cyclisation. Further studies on this unusual transformation have been extensively performed by Moreto et al. [93]. [Pg.92]

Metal complexes of 1,1-dithiolates have been reviewed by Coucou-vanis (1) Eisenberg (2) presented a systematic, structural review of dithiolato chelates, and Stokolosa ct al. (3) reviewed dithiophosphate complexes in detail. Earlier reviews (4-3) covered less recent work in greater detail. Following initial work by Delepine (9), 1,1-dithiolato complexes were more intensively studied between 1930 and 1941 (10-16). There is, however, continuous interest in the synthesis, characterization, electronic structures, and bonding of these complexes. [Pg.212]

This paper reviews the recent studies in the field of radical reactions of organobromine compounds. A special attention is paid to the use of metal-complex systems based on iron pentacarbonyl as catalysts this makes it possible to perform the initiation and chain transfer reactions selectively at C-Br bond. [Pg.180]

Finally, concurrently with addition, reduction of tri- or dihalomethyl groups in the adduct can occur under conditions of initiating by metal-complex systems in the presence of hydrogen donor chain transfer at C-H bond, at C-Br one, is also possible to form compounds containing one bromine atom less than adducts. [Pg.182]

All the products were isolated as individual compounds, their structures are confirmed by NMR method (Table 1). Monograph (ref. 3) discusses in detail a character of action of metal-complex initiating system in radical reactions of polyhalogenmethanes with unsaturated compounds. [Pg.186]

The use of metal-complex initiating systems proved to be especially promising in carrying out the reactions with acrylic monomers which can be easily polymerized, when the common initiators of radical reactions are excepted. The use of Fe(CO)s -I- DMFA system allows us to perform homolytical addition of bromoform to acrylic monomers selectively at C-Br bond with no essential polymerization (ref. 10). [Pg.186]

Thus, this first example of stereoselective radical reaction, initiated with the system based on Fe(CO)5, shows opportunities and prospects of using the metal complex initiators for obtaining the stereomerically pure adducts of bromine-containing compounds to vinyl monomers with chiral substituents. [Pg.192]


See other pages where Initiation metal complexes is mentioned: [Pg.630]    [Pg.185]    [Pg.630]    [Pg.185]    [Pg.60]    [Pg.295]    [Pg.232]    [Pg.269]    [Pg.502]    [Pg.174]    [Pg.286]    [Pg.58]    [Pg.315]    [Pg.11]    [Pg.505]    [Pg.104]    [Pg.487]    [Pg.488]    [Pg.275]    [Pg.48]    [Pg.389]    [Pg.185]   
See also in sourсe #XX -- [ Pg.59 , Pg.60 , Pg.61 ]




SEARCH



Complex initiating

Initiation complex

Initiation efficiency metal carbene complexes

Metal-oxygen complexes, initiation

Metals initiated

Photo-and Peroxide-Initiated Catalysis by Metal Complexes

Redox initiators metal complex/organic halide

Transition metal salts/complexes redox initiation

© 2024 chempedia.info