Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy, function

FTIR. see Fourier transform infrared spectroscopy Function... [Pg.760]

Infrared and Raman spectroscopy each probe vibrational motion, but respond to a different manifestation of it. Infrared spectroscopy is sensitive to a change in the dipole moment as a function of the vibrational motion, whereas Raman spectroscopy probes the change in polarizability as the molecule undergoes vibrations. Resonance Raman spectroscopy also couples to excited electronic states, and can yield fiirtlier infomiation regarding the identity of the vibration. Raman and IR spectroscopy are often complementary, both in the type of systems tliat can be studied, as well as the infomiation obtained. [Pg.1150]

Characterization. In many cases, ftir is a timely and cost-effective method to identify and quantify certain functionaHties in a resin molecule. Based on developed correlations, ftir is routinely used as an efficient method for the analysis of resin aromaticity, olefinic content, and other key functional properties. Near infrared spectroscopy is also quickly becoming a useful tool for on-line process and property control. [Pg.350]

The ease of sample handling makes Raman spectroscopy increasingly preferred. Like infrared spectroscopy, Raman scattering can be used to identify functional groups commonly found in polymers, including aromaticity, double bonds, and C bond H stretches. More commonly, the Raman spectmm is used to characterize the degree of crystallinity or the orientation of the polymer chains in such stmctures as tubes, fibers (qv), sheets, powders, and films... [Pg.214]

Infrared Spectroscopy (ir). Infrared curves are used to identify the chemical functionality of waxes. Petroleum waxes with only hydrocarbon functionality show slight differences based on crystallinity, while vegetable and insect waxes contain hydrocarbons, carboxyflc acids, alcohols, and esters. The ir curves are typically used in combination with other analytical methods such as dsc or gc/gpc to characterize waxes. [Pg.318]

We discuss the rotational dynamics of water molecules in terms of the time correlation functions, Ciit) = (P [cos 0 (it)]) (/ = 1, 2), where Pi is the /th Legendre polynomial, cos 0 (it) = U (0) U (it), u [, Is a unit vector along the water dipole (HOH bisector), and U2 is a unit vector along an OH bond. Infrared spectroscopy probes Ci(it), and deuterium NMR probes According to the Debye model (Brownian rotational motion), both... [Pg.491]

As indicated above, the penetration depth is on the order of a micrometer. That means that in ATR, absorption of infrared radiation mostly occurs within a distance 8 of the surface and ATR is not as surface sensitive as some other surface analysis techniques. However, ATR, like all forms of infrared spectroscopy, is very sensitive to functional groups and is a powerful technique for characterizing the surface regions of polymers. [Pg.246]

ATR infrared spectroscopy can be used to construct a depth profile showing the way in which the surface composition of a polymer changes as a function of distance away from the surface and into the polymer [3], As long as the polymer is not a very strong absorber, the absorbance of an infrared band in ATR is ... [Pg.246]

If i = i — ik] and H2 = ns — are known as a function of wavelength, Eq. 12 can be used to calculate the entire RAIR spectrum of a surface film. Since transmission infrared spectroscopy mostly measures k, differences between transmission and RAIR spectra can be identified. Fig. 6 shows a spectrum that was synthesized assuming two Lorentzian-shaped absorption bands of the same intensity but separated by 25 cm. The corresponding spectrum of i values was calculated from the k spectrum using the Kramers-Kronig transformation and is also shown in Fig. 6. The RAIR spectrum was calculated from the ti and k spectra using Eqs. 11 and 12 and is shown in Fig. 7. [Pg.251]

Infrared (IR) spectroscopy (Section 13.20) Analytical technique based on energy absorbed by a molecule as it vibrates by stretching and bending bonds. Infrared spectroscopy is useful for analyzing the functional groups in a molecule. [Pg.1286]

Infrared spectroscopy What functional groups are present ... [Pg.408]

We saw in Chapter 12 that mass spectrometry gives a molecule s formula and infrared spectroscopy identifies a molecule s functional groups. Nuclear magnetic resonance spectroscopy does not replace either of these techniques rather, it complements them by "mapping" a molecule s carbon-hydrogen framework. Taken together, mass spectrometry, JR, and NMR make it possible to determine the structures of even very complex molecules. [Pg.440]

There is supporting evidence in the literature for the validity of this method two cases in particular substantiate it. In one, tests were made on plastics heated in the pressure of air. Differential infrared spectroscopy was used to determine the chemical changes at three temperatures, in the functional groups of a TP acrylonitrile, and a variety of TS phenolic plastics. The technique uses a film of un-aged plastic in the reference beam and the aged sample in the sample beam. Thus, the difference between the reference and the aged sample is a measure of the chemical changes. [Pg.117]

Useful information such as the functionality and crystallinity of the polymers can be obtained by using infrared spectroscopy. Elemental analysis is also considered as one of die tools for die characterization of die polymers. Due to die endgroups and incomplete combustion of the carbon, it is common to observe die low-value carbon content than die theoretical one. [Pg.490]


See other pages where Infrared spectroscopy, function is mentioned: [Pg.440]    [Pg.476]    [Pg.543]    [Pg.440]    [Pg.476]    [Pg.543]    [Pg.203]    [Pg.1286]    [Pg.8]    [Pg.208]    [Pg.280]    [Pg.49]    [Pg.315]    [Pg.315]    [Pg.292]    [Pg.416]    [Pg.244]    [Pg.31]    [Pg.433]    [Pg.433]    [Pg.389]    [Pg.302]    [Pg.59]    [Pg.82]    [Pg.189]    [Pg.61]    [Pg.6]    [Pg.362]    [Pg.362]    [Pg.362]   
See also in sourсe #XX -- [ Pg.3 ]




SEARCH



Families of Carbon Compounds Functional Groups, Intermolecular Forces, and Infrared (IR) Spectroscopy

Fourier transform infrared spectroscopy functional groups detection

Fourier transform-infrared spectroscopy functional group analysis

Functional Near Infrared Spectroscopy

Functional group Infrared spectroscopy

Functional groups and infrared spectroscopy

Functional groups, determination infrared spectroscopy

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

Infrared spectroscopy carbonyl functional groups

Infrared spectroscopy functional group absorption

Infrared spectroscopy functional group absorption frequencies (Appendix

Infrared spectroscopy functional group identification

Infrared spectroscopy functional group identification with

Infrared spectroscopy functional groups containing

Infrared spectroscopy functional-group region

Spectroscopy functional

Surface functional groups infrared spectroscopy

© 2024 chempedia.info