Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy functional group identification

The use of infrared spectroscopy, either through fingerprint characterisation or by functional group identification, is well established. IR vibrational spectroscopy has thus been applied in spectroelectrochemistry for quite some time. ° The possibility to establish the symmetry of a molecule has made IR-SEC a most valuable tool for mixed-valence chemistry, ° allowing intramolecular electron-transfer rates in the picosecond region to be assessed and electron-transfer isomers to be established. ... [Pg.82]

Raman spectroscopy is by no means a new technique, although it is not as widely known or used by chemists as the related technique of infrared spectroscopy. However, following developments in the instrumentation over the last 20 years or so Raman spectroscopy appears to be having something of a rebirth. Raman, like infrared, may be employed for qualitative analysis, molecular structure determination, functional group identification, comparison of various physical properties such as crystallinity, studies of molecular interaction and determination of thermodynamic properties. [Pg.294]

High performance spectroscopic methods, like FT-IR and NIR spectrometry and Raman spectroscopy are widely applied to identify non-destructively the specific fingerprint of an extract or check the stability of pure molecules or mixtures by the recognition of different functional groups. Generally, the infrared techniques are more frequently applied in food colorant analysis, as recently reviewed. Mass spectrometry is used as well, either coupled to HPLC for the detection of separated molecules or for the identification of a fingerprint based on fragmentation patterns. ... [Pg.523]

The next most useful is vibrational spectroscopy but identification of large molecules is still uncertain. In the laboratory, vibrational spectroscopy in the infrared (IR) is used routinely to identify the functional groups in organic molecules but although this is important information it is not sufficient to identify the molecule. Even in the fingerprint region where the low wavenumber floppy vibrational modes of big molecules are observed, this is hardly diagnostic of structure. On occasion, however, when the vibrational transition can be resolved rotationally then the analysis of the spectrum becomes more certain. [Pg.60]

In chemistry, infrared spectroscopy is usually the first method of choice for the identification of organic functional groups and inorganic species such as CO32 in a wide range of materials. Because it can easily identify the OH- group in many materials (a broad absorption band at 3700-2700 cm ), it has proved useful for the study of corroded glass and weathered obsidian, where the corrosion... [Pg.87]

Infrared (IR) spectroscopy was the first modern spectroscopic method which became available to chemists for use in the identification of the structure of organic compounds. Not only is IR spectroscopy useful in determining which functional groups are present in a molecule, but also with more careful analysis of the spectrum, additional structural details can be obtained. For example, it is possible to determine whether an alkene is cis or trans. With the advent of nuclear magnetic resonance (NMR) spectroscopy, IR spectroscopy became used to a lesser extent in structural identification. This is because NMR spectra typically are more easily interpreted than are IR spectra. However, there was a renewed interest in IR spectroscopy in the late 1970s for the identification of highly unstable molecules. Concurrent with this renewed interest were advances in computational chemistry which allowed, for the first time, the actual computation of IR spectra of a molecular system with reasonable accuracy. This chapter describes how the confluence of a new experimental technique with that of improved computational methods led to a major advance in the structural identification of highly unstable molecules and reactive intermediates. [Pg.148]

One of the main routine uses of infrared spectroscopy is identification of specific functional groups present in an unknown molecule and, as a result, further characterization of the unknown. By far the most common example involves the carbonyl group. Location of a strong band in the infrared in the vicinity of 1730cm is almost certain proof that carbonyl functionality is present. This confidence is based on the fact that the characteristic frequency (the CO stretch in this case) is isolated, that is to say, it is sufficiently far removed from the other bands in the infrared spectrum to not be confused with them. It also assumes that carbonyl groups in different chemical environments will exhibit similar characteristic... [Pg.263]

The aim of qualitative analysis of homopolymers by infrared spectroscopy is the elucidation of polymer structure and compound identification. This often entails the identification of the functional groups and the modes of attachment to the polymer backbone [2,4,25,26], In the case of mixtures, the aim of qualitative... [Pg.100]

An integrated GC/IR/MS instrument is a powerful tool for rapid identification of thermally generated aroma compounds. Fourier transform infrared spectroscopy (GC/IR) provides a complementary technique to mass spectrometry (MS) for the characterization of volatile flavor components in complex mixtures. Recent improvements in GC/IR instruments have made it possible to construct an integrated GC/IR/HS system in which the sensitivity of the two spectroscopic detectors is roughly equal. The combined system offers direct correlation of IR and MS chromatograms, functional group analysis, substantial time savings, and the potential for an expert systems approach to identification of flavor components. Performance of the technique is illustrated with applications to the analysis of volatile flavor components in charbroiled chicken. [Pg.61]

Microchemical reactions, which with care and suitably sized microscale equipment can be carried out on nanogram amounts of material, can be used to determine the presence or absence of specific functional groups, or determine the numbers, positions, and even geometries of double bonds. The application of microchemical reactions to pheromone identification has been reviewed in detail by Attygalle (1998). Coupled GC-Fourier transform infrared spectroscopy has also found occasional use in pheromone identification (Attygalle et al., 1995 review, Leal, 1998). [Pg.419]

The main spectrometric identification techniques employed are gas chromatography/mass spectrometry (GC/MS) (13), liquid chromatography/tandem mass spectrometry (LC/MS(/MS)) (14), nuclear magnetic resonance (NMR) (11), and/or gas chromatography/Fourier transform infrared spectroscopy (GC/FL1R) (15). Each of these spectrometric techniques provides a spectrum that is characteristic of a chemical. MS and NMR spectra provide (detailed) structural information (like a fingerprint ), whereas an FUR spectrum provides information on functional groups. [Pg.98]

INFRARED AND RAMAN SPECTROSCOPY ° ° 21-138 Applications The following use was made of infrared and Raman spectroscopy identification of surface groups on treated and untreated fumed silica, tion of silica functional groups and coatings by Raman spectroscopy. [Pg.593]

Qualitative analysis This can be considered in terms of the identification of the constituents of a sample without regard to their relative amounts . Often it refers to elemental analysis, although it can refer to different chemicals within a mixture or even the identification of different functional groups (e.g. by infrared spectroscopy). [Pg.283]

The various functional groups were also identified by independent, chemical methods used in organic chemistry [38, 42]. Infrared spectroscopy has also been used for the identification of surface groups. In the beginning, the method suffered from the strong absorption of carbon materials, and poor spectra were obtained. Zawadzki used thin films of cellulose carbonized at 600° C to get acceptable transmission spectra [50], but it is debatable whether such chars are really representative for carbons. It was not possible to heat the cellulose chars... [Pg.311]

Mid-infrared (IR) spectroscopy is a well-established technique for the identification and structural analysis of chemical compounds. The peaks in the IR spectrum of a sample represent the excitation of vibrational modes of the molecules in the sample and thus are associated with the various chemical bonds and functional groups present in the molecules. Thus, the IR spectrum of a compound is one of its most characteristic physical properties and can be regarded as its "fingerprint." Infrared spectroscopy is also a powerful tool for quantitative analysis as the amount of infrared energy absorbed by a compound is proportional to its concentration. However, until recently, IR spectroscopy has seen fairly limited application in both the qualitative and the quantitative analysis of food systems, largely owing to experimental limitations. [Pg.93]

This chapter also introduces infrared spectroscopy, a useful tool for qualitative identification of functional groups. [Pg.367]

Several recent overviews of principles and applications of Raman, FTIR, and HREELS spectroscopies are available in the literature [35-37, 124]. The use of all major surface and interface vibrational spectroscopies in adhesion studies has recently been reviewed [38]. Infrared spectroscopy is undoubtedly the most widely applied spectroscopic technique of all methods described in this chapter because so many different forms of the technique have been developed, each with its own specific applicability. Common to all vibrational techniques is the capability to detect functional groups, in contrast to the techniques discussed in Sec. III.A, which detect primarily elements. The techniques discussed here all are based in principle on the same mechanism, namely, when infrared radiation (or low-energy electrons as in HREELS) interacts with a sample, groups of atoms, not single elements, absorb energy at characteristic vibrations (frequencies). These absorptions are mainly used for qualitative identification of functional groups in the sample, but quantitative determinations are possible in many cases. [Pg.408]

This section provides a number of examples to illustrate approaches to the identification of unknown organic materials by using infrared spectroscopy. First, an example of the use of the technique in identifying an organic compound containing a number of functional groups is provided. [Pg.88]


See other pages where Infrared spectroscopy functional group identification is mentioned: [Pg.697]    [Pg.222]    [Pg.315]    [Pg.67]    [Pg.267]    [Pg.541]    [Pg.40]    [Pg.464]    [Pg.194]    [Pg.98]    [Pg.1]    [Pg.273]    [Pg.245]    [Pg.11]    [Pg.153]    [Pg.179]    [Pg.139]    [Pg.290]    [Pg.306]    [Pg.91]    [Pg.109]    [Pg.1308]    [Pg.25]    [Pg.152]    [Pg.5]    [Pg.93]    [Pg.494]   
See also in sourсe #XX -- [ Pg.476 , Pg.477 ]




SEARCH



Functional group identification

Functional groups, identification spectroscopy

Identification infrared

Identification infrared spectroscopy

Infrared functional groups

Infrared spectroscopy groups

Infrared spectroscopy, function

Spectroscopy functional

Spectroscopy functional groups

© 2024 chempedia.info