Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy functional groups

Near-infrared absorption is therefore essentially due to combination and overtone modes of higher energy fundamentals, such as C-H, N-H, and O-H stretches, which appear as lower overtones and lower order combination modes. Since the NIR absorption of polyatomic molecules thus mainly reflects vibrational contributions from very few functional groups, NIR spectroscopy is less suitable for detailed qualitative analysis than IR, which shows all (active) fundamentals and the overtones and combination modes of low-energy vibrations. On the other hand, since the vibrational intensities of near-infrared bands are considerably lower than those of corresponding infrared bands, optical layers of reasonable size (millimeters, centimeters) may be transmitted in the NIR, even in the case of liquid samples, compared to the layers of pm size which are detected in the infrared. This has important consequences for the direct quantitative study of chemical reactions, chemical equilibria, and phase equilibria via NIR spectroscopy. [Pg.519]

Infrared (IR), near-infrared (NIR), and Raman spectroscopy have been successfully used for quantitative and qualitative analysis of polymer films. These methods leverage the fact that vibrational spectra are very sensitive to polymer structure and the strength of chemical bonds of functional groups. NIR spectroscopy has several practical advantages in polymer film analysis, including nondestructive and... [Pg.89]

Before the advent of NMR spectroscopy infrared (IR) spectroscopy was the mstrumen tal method most often applied to determine the structure of organic compounds Although NMR spectroscopy m general tells us more about the structure of an unknown com pound IR still retains an important place m the chemist s inventory of spectroscopic methods because of its usefulness m identifying the presence of certain functional groups within a molecule... [Pg.559]

The ease of sample handling makes Raman spectroscopy increasingly preferred. Like infrared spectroscopy, Raman scattering can be used to identify functional groups commonly found in polymers, including aromaticity, double bonds, and C bond H stretches. More commonly, the Raman spectmm is used to characterize the degree of crystallinity or the orientation of the polymer chains in such stmctures as tubes, fibers (qv), sheets, powders, and films... [Pg.214]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

As indicated above, the penetration depth is on the order of a micrometer. That means that in ATR, absorption of infrared radiation mostly occurs within a distance 8 of the surface and ATR is not as surface sensitive as some other surface analysis techniques. However, ATR, like all forms of infrared spectroscopy, is very sensitive to functional groups and is a powerful technique for characterizing the surface regions of polymers. [Pg.246]

Infrared (IR) spectroscopy, which reveals the presence or absence of key functional groups. [Pg.519]

Infrared (IR) spectroscopy (Section 13.20) Analytical technique based on energy absorbed by a molecule as it vibrates by stretching and bending bonds. Infrared spectroscopy is useful for analyzing the functional groups in a molecule. [Pg.1286]

Infrared spectroscopy What functional groups are present ... [Pg.408]

We saw in Chapter 12 that mass spectrometry gives a molecule s formula and infrared spectroscopy identifies a molecule s functional groups. Nuclear magnetic resonance spectroscopy does not replace either of these techniques rather, it complements them by "mapping" a molecule s carbon-hydrogen framework. Taken together, mass spectrometry, JR, and NMR make it possible to determine the structures of even very complex molecules. [Pg.440]

Infrared (IR) spectroscopy (Section 12.6) A kind of optical spectroscopy that uses infrared energy. IR spectroscopy is particularly useful in organic chemistry for determining the kinds of functional groups present in molecules. [Pg.1244]

There is supporting evidence in the literature for the validity of this method two cases in particular substantiate it. In one, tests were made on plastics heated in the pressure of air. Differential infrared spectroscopy was used to determine the chemical changes at three temperatures, in the functional groups of a TP acrylonitrile, and a variety of TS phenolic plastics. The technique uses a film of un-aged plastic in the reference beam and the aged sample in the sample beam. Thus, the difference between the reference and the aged sample is a measure of the chemical changes. [Pg.117]

High performance spectroscopic methods, like FT-IR and NIR spectrometry and Raman spectroscopy are widely applied to identify non-destructively the specific fingerprint of an extract or check the stability of pure molecules or mixtures by the recognition of different functional groups. Generally, the infrared techniques are more frequently applied in food colorant analysis, as recently reviewed. Mass spectrometry is used as well, either coupled to HPLC for the detection of separated molecules or for the identification of a fingerprint based on fragmentation patterns. ... [Pg.523]

Previous authors have taught the principles of solving organic structures from spectra by using a combination of methods NMR, infrared spectroscopy (IR), ultraviolet spectroscopy (UV) and mass spectrometry (MS). However, the information available from UV and MS is limited in its predictive capability, and IR is useful mainly for determining the presence of functional groups, many of which are also visible in carbon-13 NMR spectra. Additional information such as elemental analysis values or molecular weights is also often presented. [Pg.220]

Several assumptions were made in order to analyze kinetic data in terms of this expression (2). First it was assumed that k 2 m kj, k2 k 3, and kj/k j k /k ( - If). Second it was assumed that the rate constants were independent of the extent of reaction i.e., that all six functional groups were equally reactive and that the reaction was not diffusion controlled. The concentration of polymer hydroxyl functionality was determined experimentally using infrared spectroscopy as described elsewhere (7). A major unknown is the instantaneous concentration of methanol. Fits to the kinetic data were made with a variety of assumptions concerning the methanol concentration. The best fit was achieved by assuming that the concentration of methanol was initally constant but decreased at a rate proportional to the concentration of residual polymer hydroxy groups towards the end of the reaction. As... [Pg.258]


See other pages where Infrared spectroscopy functional groups is mentioned: [Pg.369]    [Pg.167]    [Pg.288]    [Pg.369]    [Pg.167]    [Pg.288]    [Pg.240]    [Pg.16]    [Pg.678]    [Pg.203]    [Pg.1286]    [Pg.8]    [Pg.208]    [Pg.208]    [Pg.280]    [Pg.315]    [Pg.315]    [Pg.220]    [Pg.244]    [Pg.738]    [Pg.9]    [Pg.433]    [Pg.433]    [Pg.440]    [Pg.333]    [Pg.302]    [Pg.82]    [Pg.362]    [Pg.362]    [Pg.362]    [Pg.5]    [Pg.312]    [Pg.315]    [Pg.243]    [Pg.97]    [Pg.134]    [Pg.402]   


SEARCH



Infrared functional groups

Infrared spectroscopy groups

Infrared spectroscopy, function

Spectroscopy functional

Spectroscopy functional groups

© 2024 chempedia.info