Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy band intensities

Alternation is usually above 90%. Nearly perfect alternation of isomeric units in a ca 1 1 monomer ratio has been confirmed by infrared spectroscopy. Bands at 733 and 721 cm have an intensity proportional to the concentration of (CH2) groups (n = 4 and <6, respectively) present in a copolymer containing 46 mol % tetrafluoroethylene intensity decreases with increasing concentration of fluorinated monomer. [Pg.366]

The following sections will compare the infrared and NMR techniques as tools for quantitative analysis. Let us first consider how NMR spectroscopy differs from infrared spectroscopy as a tool for quantitative analysis. In infrared spectroscopy the intensity of an absorption band depends on a number of factors. These include instrument parameters, the type of compound, etc. In NMR spec-... [Pg.374]

A powerful characteristic of RAIR spectroscopy is that the technique can be used to determine the orientation of surface species. The reason for this is as follows. When parallel polarized infrared radiation is specularly reflected off of a substrate at a large angle of incidence, the incident and reflected waves combine to form a standing wave that has its electric field vector (E) perpendicular to the substrate surface. Since the intensity of an infrared absorption band is proportional to / ( M), where M is the transition moment , it can be seen that the intensity of a band is maximum when E and M are parallel (i.e., both perpendicular to the surface). / is a minimum when M is parallel to the surface (as stated above, E is always perpendicular to the surface in RAIR spectroscopy). [Pg.251]

If i = i — ik] and H2 = ns — are known as a function of wavelength, Eq. 12 can be used to calculate the entire RAIR spectrum of a surface film. Since transmission infrared spectroscopy mostly measures k, differences between transmission and RAIR spectra can be identified. Fig. 6 shows a spectrum that was synthesized assuming two Lorentzian-shaped absorption bands of the same intensity but separated by 25 cm. The corresponding spectrum of i values was calculated from the k spectrum using the Kramers-Kronig transformation and is also shown in Fig. 6. The RAIR spectrum was calculated from the ti and k spectra using Eqs. 11 and 12 and is shown in Fig. 7. [Pg.251]

The structure of the protonated enamines has been investigated by infrared spectroscopy. On protonation there is a characteristic shift of the band in the double-bond stretching region to higher frequencies by 20 to 50 cm with an increased intensity of absorption (6,13,14a). Protonated enamines also show absorption in the ultraviolet at 220-225 m/x due to the iminium structure (14b). This confirms structure 5 for these protonated enamines, because a compound having structure 4 would be expected to have only end absorption as the electrons on nitrogen would not be available for interaction with the n electrons of the double bond. [Pg.117]

Plutonium(IV) polymer has been examined by infrared spectroscopy (26). One of the prominent features in the infrared spectrum of the polymer is an intense band in the OH stretching region at 3400 cm 1. Upon deuteration, this band shifts to 2400 cm 1. However, it could not be positively assigned to OH vibrations in the polymer due to absorption of water by the KBr pellet. In view of the broad band observed in this same region for I, it now seems likely that the bands observed previously for Pu(IV) polymer are actually due to OH in the polymer. Indeed, we have observed a similar shift in the sharp absorption of U(0H)2S0ir upon deuteration (28). This absorption shifts from 3500 cm 1 to 2600 cm 1. [Pg.63]

The first Raman and infrared studies on orthorhombic sulfur date back to the 1930s. The older literature has been reviewed before [78, 92-94]. Only after the normal coordinate treatment of the Sg molecule by Scott et al. [78] was it possible to improve the earlier assignments, especially of the lattice vibrations and crystal components of the intramolecular vibrations. In addition, two technical achievements stimulated the efforts in vibrational spectroscopy since late 1960s the invention of the laser as an intense monochromatic light source for Raman spectroscopy and the development of Fourier transform interferometry in infrared spectroscopy. Both techniques allowed to record vibrational spectra of higher resolution and to detect bands of lower intensity. [Pg.47]

The specific surface area of the fresh and used catalysts was measured by nitrogen adsorption method (Sorptometer 1900, Carlo Erba Instruments). The catalysts were outgassed at 473 K prior to the measurements and the Dubinin equation was used to calculate the specific surface area. The acidity of investigated samples was measured by infrared spectroscopy (ATI Mattson FTIR) by using pyridine (>99.5%, a.r.) as a probe molecule for qualitative and quantitative determination of both Bronstcd and Lewis acid sites (further denoted as BAS and LAS). The amounts of BAS and LAS were calculated from the intensities of corresponding spectral bands by using the molar extinction coefficients reported by Emeis (23). Full details of the acidity measurements are provided elsewhere (22). [Pg.281]

The carbonyl index is not a standard technique, but is a widely used convenient measurement for comparing the relative extent and rate of oxidation in series of related polymer samples. The carbonyl index is determined using mid-infrared spectroscopy. The method is based on determining the absorbance ratio of a carbonyl (vC = 0) band generated as a consequence of oxidation normalised normally to the intensity of an absorption band in the polymer spectrum that is invariant with respect to polymer oxidation. (In an analogous manner, a hydroxyl index may be determined from a determination of the absorbance intensity of a vOH band normalised against an absorbance band that is invariant to the extent of oxidation.) In the text following, two examples of multi-technique studies of polymer oxidation will be discussed briefly each includes a measure of a carbonyl index. [Pg.394]

Figure 7 Hydroperoxide index (HI) determined from mid-infrared spectroscopy (ratio of the integrated intensity of the 3,552 cm 1 band to the integrated intensity of the band at 2,010 cm-1) as a function of total hydroperoxide content measured by iodiometric titration. Figure 7 Hydroperoxide index (HI) determined from mid-infrared spectroscopy (ratio of the integrated intensity of the 3,552 cm 1 band to the integrated intensity of the band at 2,010 cm-1) as a function of total hydroperoxide content measured by iodiometric titration.
Finally, it should be kept in mind that quantification is often problematic in surface analysis and characterization. Firstly because some techniques are not really suited for quantification, but also in cases such as infrared spectroscopy where one does not really know precisely how deep into the material one is probing. Although, there are many good examples of semi-quantitative applications that involve measuring relative band intensities that relate to changes in a surface property. However, for problem solving revealing qualitative differences is often sufficient information to be able to identify cause and move on to look for a potential solution. [Pg.677]

D correlation analysis is a powerful tool applicable to the examination of data obtained from infrared spectroscopy. The correlation intensities, displayed in the form of 2D maps, allow us to correlate the shift induced by CO adsorption and acidity of sites in dealuminated zeolites. Results are in accordance with previous results, obtained using only IR measurements, proving the validity of this technique. New correlations allowed the assignment of very complex groups of bands, and 2D correlation revealed itself as a great help for understanding acidity in dealuminated zeolites. 2D correlation has allowed us to validate the model obtained by NMR. [Pg.64]

To evaluate the reactivity of model compounds III-VIII in photoinitiated cationic polymerization, we have employed real-time infrared spectroscopy (RTIR). Thin film samples of the model compounds containing 0.5 mol% of (4-n-octyloxyphenyl)phenyliodonium SbF - as a photoinitiator were irradiated in a FTIR spectrometer at a UV intensity of 20 mW/cm2. During irradiation, the decrease in the absorbance of the epoxy ether band at 860 cm-1 was monitored. [Pg.86]

Some characteristics of, and comparisons between, surface-enhanced Raman spectroscopy (SERS) and infrared reflection-absorption spectroscopy (IRRAS) for examining reactive as well as stable electrochemical adsorbates are illustrated by means of selected recent results from our laboratory. The differences in vibrational selection rules for surface Raman and infrared spectroscopy are discussed for the case of azide adsorbed on silver, and used to distinguish between "flat" and "end-on" surface orientations. Vibrational band intensity-coverage relationships are briefly considered for some other systems that are unlikely to involve coverage-induced reorientation. [Pg.303]

Subtractively normalized interfacial Fourier transform infrared spectroscopy has been used to follow the reorientations of isoquinoline molecules adsorbed at a mercury electrode. Field induced infrared absorption is a major contribution to the intensities of the vibrational band structure of aromatic organic molecules adsorbed on mercury. Adsorbed isoquinoline was observed to go through an abrupt reorientation at potentials more negative than about -0.73 V vs SCE (the actual transition potential being dependent on the bulk solution concentration) to the vertical 6,7 position. [Pg.349]

In this section, we shall look at the way these various absorptions are analysed by spectroscopists. There are four kinds of quantized energy translational, rotational, vibrational and electronic, so we anticipate four corresponding kinds of spectroscopy. When a photon is absorbed or generated, we must conserve the total angular momentum in the overall process. So we must start by looking at some of the rules that allow for intense UV-visible bands (caused by electronic motion), then look at infrared spectroscopy (which follows vibrational motion) and finally microwave spectroscopy (which looks at rotation). [Pg.459]

Edwards and Schrader—IR investigations support common formate intermediate in water-gas shift and methanol synthesis over Cu/ZnO. Edwards and Schrader,234 using careful reduction procedures (95%N2/5%H2), were able to obtain direct evidence by infrared spectroscopy of the formation of active OH groups on Cu/ZnO, that formed surface formates on the surface of the zinc phase (1576, 1381, 1366, 2970, and 2878 cm-1, respectively for OCO asymmetric, OCO symmetric, and C-H stretching bands) upon exposure to CO. In the presence of CO and H20, the formate intensity initially increased, followed by the production of C02, indicative of water-gas shift. A carbonyl band was also observed at 2093 cm-1. The authors... [Pg.182]

The authors use some arguments to rule out the formate intermediate before proceeding to the discussion regarding the redox mechanism. The basis was not the activation energy barrier for OCOH formation, as it is quite low relative to other possible pathways. They rule out the OCOH as an intermediate on the basis of its proposed decomposition selectivity, which they indicate will always preferentially decompose back to CO and OH. And the isomerization to a true formate species (i.e., with a C-H bond) they indicate cannot occur by reacting OH on Cu(110) with CO. Yet intense formate bands have been observed by infrared spectroscopy upon... [Pg.205]


See other pages where Infrared spectroscopy band intensities is mentioned: [Pg.93]    [Pg.395]    [Pg.158]    [Pg.86]    [Pg.421]    [Pg.446]    [Pg.259]    [Pg.254]    [Pg.300]    [Pg.373]    [Pg.189]    [Pg.194]    [Pg.124]    [Pg.347]    [Pg.401]    [Pg.402]    [Pg.721]    [Pg.128]    [Pg.10]    [Pg.123]    [Pg.262]    [Pg.371]    [Pg.79]    [Pg.284]    [Pg.28]    [Pg.233]    [Pg.312]    [Pg.323]    [Pg.206]    [Pg.229]    [Pg.350]   
See also in sourсe #XX -- [ Pg.259 ]




SEARCH



Band intensities

Infrared band spectroscopy

Infrared intensity

Intense infrared

Spectroscopy intensities

© 2024 chempedia.info