Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In interphase mass transfers

Understand the importance of material balances in interphase mass-transfer calculations. [Pg.179]

Figure 10.4-2. Concentration driving forces and interface concentrations in interphase mass transfer (equimolar counterdiffusion). Figure 10.4-2. Concentration driving forces and interface concentrations in interphase mass transfer (equimolar counterdiffusion).
EXAMPLE 10.4-1. Interface Compositions in Interphase Mass Transfer The solute A is being absorbed from a gas mixture of A and B in a wetted-wall tower with the liquid flowing as a film downward along the wall. [Pg.597]

Past research has shown that even trace amounts of surfactants (which are inevitably present in most practical systems) cause considerable retarding effects and affect technological processes such as thermocapillary migrations in microgravity environments (see [70]), and reduction in interphase mass-transfer in dropwise extraction systems (see [22], [28], [33], [72]). [Pg.50]

Tray Efficiencies in Plate Absorbers and Strippers Compn-tations of the nnmber of theoretical plates N assnme that the hqnia on each plate is completely mixed and that the vapor leaving the plate is in eqnihbrinm with the liqnid. In actnal practice a condition of complete eqnihbrinm cannot exist since interphase mass transfer reqnires a finite driving-force difference. This leads to the definition of an overall plate efficiency... [Pg.1358]

Rate equations are used to describe interphase mass transfer in batch systems, packed beds, and other contacting devices for sorptive processes and are formulated in terms of fundamental transport properties of adsorbent and adsorbate. [Pg.1513]

Whenever die rich and the lean phases are not in equilibrium, an interphase concentration gradient and a mass-transfer driving force develop leading to a net transfer of the solute from the rich phase to the lean phase. A common method of describing the rates of interphase mass transfer involves the use of overall mass-transfer coefficients which are based on the difference between the bulk concentration of the solute in one phase and its equilibrium concentration in the other phase. Suppose that the bulk concentradons of a pollutant in the rich and the lean phases are yi and Xj, respectively. For die case of linear equilibrium, the pollutant concnetration in the lean phase which is in equilibrium with y is given by... [Pg.19]

Under certain conditions, it will be impossible for the metal and the melt to come to equilibrium and continuous corrosion will occur (case 2) this is often the case when metals are in contact with molten salts in practice. There are two main possibilities first, the redox potential of the melt may be prevented from falling, either because it is in contact with an external oxidising environment (such as an air atmosphere) or because the conditions cause the products of its reduction to be continually removed (e.g. distillation of metallic sodium and condensation on to a colder part of the system) second, the electrode potential of the metal may be prevented from rising (for instance, if the corrosion product of the metal is volatile). In addition, equilibrium may not be possible when there is a temperature gradient in the system or when alloys are involved, but these cases will be considered in detail later. Rates of corrosion under conditions where equilibrium cannot be reached are controlled by diffusion and interphase mass transfer of oxidising species and/or corrosion products geometry of the system will be a determining factor. [Pg.439]

This objection is supported by recent results of Moffat ef al. (109, 110), who observed severe interphase mass transfer limitations for the same system, in spite of calculations which predicted the mass transfer rate to be several orders of magnitude greater than the observed rate. As... [Pg.162]

Many semibatch reactions involve more than one phase and are thus classified as heterogeneous. Examples are aerobic fermentations, where oxygen is supplied continuously to a liquid substrate, and chemical vapor deposition reactors, where gaseous reactants are supplied continuously to a solid substrate. Typically, the overall reaction rate wiU be limited by the rate of interphase mass transfer. Such systems are treated using the methods of Chapters 10 and 11. Occasionally, the reaction will be kinetically limited so that the transferred component saturates the reaction phase. The system can then be treated as a batch reaction, with the concentration of the transferred component being dictated by its solubility. The early stages of a batch fermentation will behave in this fashion, but will shift to a mass transfer limitation as the cell mass and thus the oxygen demand increase. [Pg.65]

Chapter 11 treats reactors where mass and component balances are needed for at least two phases and where there is interphase mass transfer. Most examples have two fluid phases, typically gas-liquid. Reaction is usually confined to one phase, although the general formulation allows reaction in any phase. A third phase, when present, is usually solid and usually catalytic. The solid phase may be either mobile or stationary. Some example systems are shown in Table 11.1. [Pg.381]

An overall mass balance is written for the system as a whole. Interphase mass transfer does not appear in the system mass balance since gains in one phase exactly equal losses in the other. The net result is conceptually identical to Equation (1.3), but there are now two inlets and two outlets and the total inventory is summed over both phases. The result is... [Pg.396]

The phase mass balances are more complicated since the mass in a phase can grow or wane due to interphase mass transfer. The phase balances are... [Pg.396]

Biomass containment in continuously operated bioreactors is an essential prerequisite for the feasibility of practical industrial-scale dye biodegradation. Biofilm airlift reactors have demonstrated excellent performance for their ability to control mixing, interphase mass transfer and biofilm detachment rate. Further studies are required to further exploit the potential of this type of reactors with either aggregated cells or biofilm supported on granular carriers. [Pg.127]

First, we must consider a gas-liquid system separated by an interface. When the thermodynamic equilibrium concentration is not reached for a transferable solute A in the gas phase, a concentration gradient is established between the two phases, and this will create a mass transfer flow of A from the gas phase to the liquid phase. This is described by the two-film model proposed by W. G. Whitman, where interphase mass transfer is ensured by diffusion of the solute through two stagnant layers of thickness <5G and <5L on both sides of the interface (Fig. 45.1) [1—4]. [Pg.1518]

Fig. 1.7 Balance region showing convective and diffusive flows as well as interphase mass transfer in and out. Fig. 1.7 Balance region showing convective and diffusive flows as well as interphase mass transfer in and out.
Sorption/desorption is one of the most important processes influencing movemement of organic pollutants in natural systems. Sorption with reference to a pollutant is its transfer from the aqueous phase to the solid phase on the other hand, desorption is its transfer from the solid phase to the aqueous phase. Similar to all interphase mass-transfers, the sorption/ desorption process can be defined by the final-phase equilibrium of the pollutant at the aqueous-solid phase interface and the time required to approach final equilibrium. [Pg.168]

In 1976 he was appointed to Associate Professor for Technical Chemistry at the University Hannover. His research group experimentally investigated the interrelation of adsorption, transfer processes and chemical reaction in bubble columns by means of various model reactions a) the formation of tertiary-butanol from isobutene in the presence of sulphuric acid as a catalyst b) the absorption and interphase mass transfer of CO2 in the presence and absence of the enzyme carboanhydrase c) chlorination of toluene d) Fischer-Tropsch synthesis. Based on these data, the processes were mathematically modelled Fluid dynamic properties in Fischer-Tropsch Slurry Reactors were evaluated and mass transfer limitation of the process was proved. In addition, the solubiHties of oxygen and CO2 in various aqueous solutions and those of chlorine in benzene and toluene were determined. Within the framework of development of a process for reconditioning of nuclear fuel wastes the kinetics of the denitration of efQuents with formic acid was investigated. [Pg.261]

By comparing interfacial inactivation rates in a stirred-cell (low and controlled area of exchange) and an emulsion system (high interfacial area), these authors have shown that the use of an emulsion system can be exploited to obtain high solute interphase mass-transfer rates since the rate of specific interfacial inactivation remains low. However, in this system, the presence of an epoxide substrate at high concentration in the organic phase increases the rate of interfacial inactivation. Addition of a sacrificial protein to the system, which can prevent adsorption of the catalytic enzyme at the interface, could provide a method to reduce the rate of interfacial inactivation. [Pg.583]


See other pages where In interphase mass transfers is mentioned: [Pg.239]    [Pg.239]    [Pg.594]    [Pg.239]    [Pg.239]    [Pg.594]    [Pg.652]    [Pg.1354]    [Pg.599]    [Pg.90]    [Pg.90]    [Pg.441]    [Pg.275]    [Pg.350]    [Pg.460]    [Pg.25]    [Pg.30]    [Pg.579]    [Pg.584]    [Pg.596]    [Pg.603]    [Pg.656]    [Pg.338]    [Pg.90]    [Pg.90]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Interphase

Interphase transfer

Interphases

© 2024 chempedia.info