Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impedance measurements measurement parameters

The determined eddy-eurrent parameter is the inductance of the eomplex impedance measured by impedance analyzer at j=100 kHz. Therefore the impulse response function from chapter 4.2.1. is used for calculation. The depth of the cracks is big in comparison to coil size. For presentation the measured and pre-calculated data are related to their maxima (in air). The path X is related to the winding diameter dy of the coil. [Pg.372]

The combination of photocurrent measurements with photoinduced microwave conductivity measurements yields, as we have seen [Eqs. (11), (12), and (13)], the interfacial rate constants for minority carrier reactions (kn sr) as well as the surface concentration of photoinduced minority carriers (Aps) (and a series of solid-state parameters of the electrode material). Since light intensity modulation spectroscopy measurements give information on kinetic constants of electrode processes, a combination of this technique with light intensity-modulated microwave measurements should lead to information on kinetic mechanisms, especially very fast ones, which would not be accessible with conventional electrochemical techniques owing to RC restraints. Also, more specific kinetic information may become accessible for example, a distinction between different recombination processes. Potential-modulation MC techniques may, in parallel with potential-modulation electrochemical impedance measurements, provide more detailed information relevant for the interpretation and measurement of interfacial capacitance (see later discus-... [Pg.460]

At present, the microwave electrochemical technique is still in its infancy and only exploits a portion of the experimental research possibilities that are provided by microwave technology. Much experience still has to be gained with the improvement of experimental cells for microwave studies and in the adjustment of the parameters that determine the sensitivity and reliability of microwave measurements. Many research possibilities are still unexplored, especially in the field of transient PMC measurements at semiconductor electrodes and in the application of phase-sensitive microwave conductivity measurements, which may be successfully combined with electrochemical impedance measurements for a more detailed exploration of surface states and representative electrical circuits of semiconductor liquid junctions. [Pg.519]

Transient measnrements (relaxation measurements) are made before transitory processes have ended, hence the current in the system consists of faradaic and non-faradaic components. Such measurements are made to determine the kinetic parameters of fast electrochemical reactions (by measuring the kinetic currents under conditions when the contribution of concentration polarization still is small) and also to determine the properties of electrode surfaces, in particular the EDL capacitance (by measuring the nonfaradaic current). In 1940, A. N. Frumkin, B. V. Ershler, and P. I. Dolin were the first to use a relaxation method for the study of fast kinetics when they used impedance measurements to study the kinetics of the hydrogen discharge on a platinum electrode. [Pg.199]

Another parameter essential for quantitative applications of micropipettes is the internal ohmic resistance, R. It is largely determined by the solution resistance inside the narrow shaft of the pipette, and can be minimized by producing short (patch-type) pipettes. The micropipette resistance has been evaluated from AC impedance measurements. Beattie et al. measured the resistance of micropipettes filled with aqueous KCl solutions (0.01, 0.1, and 1 M) [18b]. The value obtained for a 3.5/am-radius pipette was within the range from 10 to 10 As expected, the tip resistance was inversely proportional to the concentration of KCl in the filling solution. In ref. 18b, the effect of pipette radius on the tip resistance was evaluated using a constant concentration of KCl. The pipette resistance varied inversely with the tip radius. The iR drop was found to be 4.5-8 mV for the pipette radii of 0.6 to 19/rm when 10 mM KCl was used. [Pg.388]

AC Impedance measurements enable the determination of charge transfer resistance and double layer capacitance and other parameters related to coated systems. [Pg.75]

In another type, mammalian cells or plasma membranes are used as electrical capacitors. Electrical impedance (El) uses the inherent electrical properties of cells to measure the parameters related to the tissue environment (Kyle et al., 1999). The mechanical contact between cell-cell and cell-substrates is measured via conductivity or El (Deng et al., 2003 ... [Pg.28]

Cases in which Impedance Spectroscopy Becomes Limited. One might say that if one understands an interface well, the results of Z-to measurements can be readily understood. Of course, the interest is in the other direction, in using Z-to plots when one does not understand the interlace. Then the task is to find an interfacial structure and mechanism (and its resulting equivalent circuit) that provides a Z that is consistent in its dependence on to with the experimental results of the impedance measurement. This requires finding reasonable parameters to fit the value of the C s and R s as a function of to for the individual elements in the various equivalent circuits. If the shape of the calculated Z-to plot can only be made to match experiment by using C s and R s that are physically unreasonable, the proposed structure and the equivalent circuit to match it are not acceptable and another must be tried. [Pg.421]

The impedance for the study of materials and electrochemical processes is of major importance. In principle, each property or external parameter that has an influence on the electrical conductivity of an electrochemical system can be studied by measurement of the impedance. The measured data can provide information for a pure phase, such as electrical conductivity, dielectrical constant or mobility of equilibrium concentration of charge carriers. In addition, parameters related to properties of the interface of a system can be studied in this way heterogeneous electron-transfer constants between ion and electron conductors, or capacity of the electrical double layer. In particular, measurement of the impedance is useful in those systems that cannot be studied with DC methods, e.g. because of the presence of a poor conductive surface coating. [Pg.50]

In this book, an explanation of capacitive behaviour in similar and comparable systems is not directly possible with constant-phase elements because such a comparison is only possible if n values are equal, particularly in the study of surfaces covered with polymer coatings where a unification of the envisaged parameters is necessary. The impedances measured match with a relatively large amount of samples, of which the structure can be complex, showing many sources of non-idealities (e.g. variations in thickness of the membrane, pore size and pore density42 7). A good indication if such non-idealities occur can be found in the values of n. If they are not comparable, non-idealities occur. [Pg.56]

Evidently, the adequate description of electrode impedance in the case of the actual contact between the surface-modified semiconductor and electrolyte represents a very complicated problem owing to the appearance of some hardly measured parameters... [Pg.174]

On a RDE, in the absence of a surface layer, the EHD impedance is a function of a single dimensionless frequency, pSc1/3. This means that if the viscosity of the medium directly above the surface of the electrode and the diffusion coefficient of the species of interest are independent of position away from the electrode, then the EHD impedance measured at different rotation frequencies reduces to a common curve when plotted as a function of p. In other words, there is a characteristic dimensionless diffusional relaxation time for the system, pD, strictly (pSc1/3)D, which is independent of the disc rotation frequency. However, if v or D vary with position (for example, as a consequence of the formation of a viscous boundary layer or the presence of a surface film), then, except under particular circumstances described below, reduction of the measured parameters to a common curve is not possible. Under these conditions pD is dependent upon the disc rotation frequency. The variation of the EHD impedance with as a function of p is therefore the diagnostic for... [Pg.427]

The advantage of network analysers is the possibility of impedance measurement near resonance with evaluation of the parameters R, L, C and C0 and test of the equivalent electrical circuit. However frequency response and network analysers are relatively slow with 1-10 s per measurement in typical experiments. A new generation of faster instruments has come to the market like the HP E5100 Network Analyzer with 40 (is per point in the impedance spectrum which allows us to obtain the impedance of the system in less than 10 ms. [Pg.478]

This option allows the user to specify the frequency at which the impedance measurements will terminate. The value must fall in the same range stated for Initial Frequency. For the LIA stations, the limit was set to 5 Hz for the scans ranging from 100 kHz to 0.1 Hz, and the frequencies below 5 Hz were collected using the multisine technique. For the FRA stations, 0.1 Hz was entered. For experiments ranging from 10 kHz to 10 Hz, the multisine technique was not required for either FRA or LIA stations, and this parameter was set to 10 Hz. [Pg.403]

We have discussed in the above sections Faradaic impedance and the correlation between Faradaic impedance and kinetic parameters. In general, one desires to separate the Faradaic impedance from Rel and Cd. Now we will focus on the extraction of Zf and the kinetic parameters from direct impedance measurements. This is based on the transformation between equivalent circuits in series and equivalent circuits in parallel. [Pg.109]

Although EIS offers many advantages for diagnosing fuel cell properties, clear difficulties exist for applying impedance methods and fitting the data to the model to extract the relevant electrochemical parameters. The limitations of the EIS technique derive from the several requirements required to obtain a valid impedance spectrum, because the accuracy of EIS measurement depends not only on the technical precision of the instrumentation but also on the operating procedures. Theoretically, there are three basic requirements for AC impedance measurements linearity, stability, and causality. [Pg.134]

Another commonly measured parameter is the phase angle of the impedance ... [Pg.314]

The existence of a current hump near Tc is confirmed by several additional facts. In the first place, these are deduced from the results of the quantitative treatment of the impedance spectra of the HTSC/solid electrolyte system [147]. This approach consists of calculating from the experimental complex-plane impedance diagrams the parameters characterizing the solid electrolyte, the polarization resistance of the reaction with the participation of silver, and the double-layer capacitance (Cdi) for each rvalue (measured with an accuracy of up to 0.05°). Temperature dependence of the conductance and capacitance of the solid electrolyte (considered as control parameters) were found to be monotonic, while the similar dependences of two other parameters exhibited anomalies near Tc- The existence of a weakly pronounced minimum of Cji near Tc, which is of great interest in itself, was interpreted by the authors as the result of sharp reconstruction of the interface in the course of superconducting transition [145]. [Pg.71]

Impedance measurements are often used to identify physical phenomena that control an electrochemical reaction and to determine the corresponding physical properties. This chapter provides guidelines for the design of experimental cells, for selection of appropriate impedance parameters, and for selection of appropriate instrument controls. [Pg.129]


See other pages where Impedance measurements measurement parameters is mentioned: [Pg.294]    [Pg.123]    [Pg.515]    [Pg.438]    [Pg.210]    [Pg.160]    [Pg.103]    [Pg.101]    [Pg.96]    [Pg.98]    [Pg.805]    [Pg.260]    [Pg.73]    [Pg.137]    [Pg.286]    [Pg.281]    [Pg.225]    [Pg.132]    [Pg.542]    [Pg.249]    [Pg.139]    [Pg.333]    [Pg.59]    [Pg.281]    [Pg.330]    [Pg.352]    [Pg.295]    [Pg.26]    [Pg.210]    [Pg.279]    [Pg.285]   
See also in sourсe #XX -- [ Pg.106 ]




SEARCH



Impedance parameters

Measurement Parameters

Parameter measured

© 2024 chempedia.info