Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immobilization interactions

The electrochemical procedure to build up the DNA biosensor included four main steps electrochemical conditioning of the electrode surface in order to oxidize the graphite impurities and to obtain a more hydrophilic surface to avoid DNA immobilization, calf thymus dsDNA immobilization, interaction with the sample solution, and electrode surface interrogation. [Pg.255]

A comparison of affinity and kinetic data ensures consistency of the analysis. For a 1 1 interaction, affinity is equal to the quotient of dissociation and association rate constants ( d = dissAass)- However, some reactions do not follow a 1 1 interaction, and it must be noted that the apparent affinity of bi- or multivalent reactions can be directly affected by the density of immobilized interaction partners. Nevertheless, the chip surface resembles the situation on a cell surface and possibly reflects the in vivo environment better than an assay free in solution ]17]. [Pg.1053]

Cryoinnnobilization procedures tiiat lead to vitrification (immobilization of the specimen water in the amorphous state) are the sole methods of preserving the interactions of the cell constituents, because the liquid character of the specimen water is retained (reviewed in [25]). [Pg.1634]

Immunoaffinity chromatography utilizes the high specificity of antigen—antibody interactions to achieve a separation. The procedure typically involves the binding, to a soHd phase, of a mouse monoclonal antibody which reacts either directly with the protein to be purified or with a closely associated protein which itself binds the product protein. The former approach has been appHed in the preparation of Factor VIII (43) and Factor IX (61) concentrates. The latter method has been used in the preparation of Factor VIII (42) by immobilization of a monoclonal antibody to von WiHebrand factor [109319-16-6] (62), a protein to which Factor VIII binds noncovalenfly. Further purification is necessary downstream of the immunoaffinity step to remove... [Pg.529]

EIAs can be used per se or with a spectrophotometer. Traditionally, EIAs have been developed in 96-weU microtiter plates which provide the immobilization support for the assay, the reaction vessel, and, when linked to a spectrophotometer-based reader, a rapid means to detect and quantify the color resulting from interaction of a substrate with the antibody—antigen—enzyme complex. Automated immunoassay analyzers targeted primarily for use in the clinical laboratory have taken automation one step further, utilizing robotics to carry out all reagent additions, washings, and final quantification including report preparation. [Pg.24]

Two techniques for sorption-spectroscopic determination of ascorbic acid have been proposed. The first one is the recovery by silica modified with tetradecyl ammonium nitrate of blue form of molibdophosphoric HPA in the presence of vitamin C. And the second one is the interaction between the ascorbic acid in solution and immobilized on silica ion associate of molibdophosphoric acid with lucigenine. The detection limits of vitamin C are 0.07 and 2.6 mg respectively. The techniques were successfully applied to the determination of ascorbic acid in fmit juices. [Pg.60]

Interaction of periodate with immobilized on the silica gel surface QAS - trinonyloctadecylammonium chloride has been studied. The optimal conditions of periodate sorption have been investigated. Interference of main components of sea water has been examined. 16500-fold excess of Ck, 11000-fold excess of Na+, 380-fold excess of K+, 420-fold excess of Ca +, 500-fold excess of Mg +, 60-fold excess of HC03, 20-fold excess of B03, 280-fold excess of SO do not interfere with the determination of periodate. [Pg.155]

BBT solution on unmodified sorbents of different nature was studied. Silica gel Merck 60 (SG) was chosen for further investigations. BBT immobilization on SG was realized by adsoi ption from chloroform-hexane solution (1 10) in batch mode. The isotherm of BBT adsoi ption can be referred to H3-type. Interaction of Co(II), Cu(II), Cd(II), Ni(II), Zn(II) ions with immobilized BBT has been studied in batch mode as a function of pH of solution, time of phase contact and concentration of metals in solution. In the presence of sodium citrate absorbance (at X = 620 nm) of immobilized BBT grows with the increase of Cd(II) concentration in solution. No interference was observed from Zn(II), Pb(II), Cu(II), Ni(II), Co(II) and macrocomponents of natural waters. This was assumed as a basis of soi ption-spectroscopic and visual test determination of Cd(II). Heavy metals eluted from BBT-SG easily and quantitatively with a small volume of HNO -ethanol mixture. This became a basis of soi ption-atomic-absoi ption determination of the total concentration of heavy metals in natural objects. [Pg.292]

We showed that these mesoporous silica materials, with variable pore sizes and susceptible surface areas for functionalization, can be utilized as good separation devices and immobilization for biomolecules, where the ones are sequestered and released depending on their size and charge, within the channels. Mesoporous silica with large-pore-size stmctures, are best suited for this purpose, since more molecules can be immobilized and the large porosity of the materials provide better access for the substrates to the immobilized molecules. The mechanism of bimolecular adsorption in the mesopore channels was suggested to be ionic interaction. On the first stage on the way of creation of chemical sensors on the basis of functionalized mesoporous silica materials for selective determination of herbicide in an environment was conducted research of sorption activity number of such materials in relation to 2,4-D. [Pg.311]

The label-free detection of biomolecules is another promising field of application for SERS spectroscopy. Tiniest amounts of these molecules can be adsorbed by specific interactions with receptors immobilized on SERS-active surfaces. They can then be identified by their spectra, or specific interactions can be distinguished from unspecific interactions by monitoring characteristic changes in the conformation sensitive SERS spectra of the receptors. [Pg.263]

Recently, many experiments have been performed on the structure and dynamics of liquids in porous glasses [175-190]. These studies are difficult to interpret because of the inhomogeneity of the sample. Simulations of water in a cylindrical cavity inside a block of hydrophilic Vycor glass have recently been performed [24,191,192] to facilitate the analysis of experimental results. Water molecules interact with Vycor atoms, using an empirical potential model which consists of (12-6) Lennard-Jones and Coulomb interactions. All atoms in the Vycor block are immobile. For details see Ref. 191. We have simulated samples at room temperature, which are filled with water to between 19 and 96 percent of the maximum possible amount. Because of the hydrophilicity of the glass, water molecules cover the surface already in nearly empty pores no molecules are found in the pore center in this case, although the density distribution is rather wide. When the amount of water increases, the center of the pore fills. Only in the case of 96 percent filling, a continuous aqueous phase without a cavity in the center of the pore is observed. [Pg.373]

In comparison with traditional biphasic catalysis using water, fluorous phases, or polar organic solvents, transition metal catalysis in ionic liquids represents a new and advanced way to combine the specific advantages of homogeneous and heterogeneous catalysis. In many applications, the use of a defined transition metal complex immobilized on a ionic liquid support has already shown its unique potential. Many more successful examples - mainly in fine chemical synthesis - can be expected in the future as our loiowledge of ionic liquids and their interactions with transition metal complexes increases. [Pg.253]

The assumption of the association of Hb in the pores of carboxylic cation exchangers has been advanced in Ref. [47] on the basis of electron microscopy at the maximum filling, almost all the pore surface is filled with Hb associates which are ordered star-shaped structures. Interprotein interaction in the adsorption immobilization of enzymes have been reported in Refs. [74, 75]. [Pg.26]

All the existing methods of immobilization involve formation of a high local BAS concentration and retention of its biological activity. In this respect, the use of disperse forms of CP as carriers of BAS used for different purposes is very promising [88]. In this case, the CP-protein interaction is an important factor in controlling the structure and properties of these systems. [Pg.34]

The influence of pH on the affinity of Hb for oxygen known as the Bohr-effect indicates that protons retain the allosteric regulation of oxygen transport. It is also an indirect confirmation of the ability of Hb and Im Hb for transporting carbon dioxide. The values of the Bohr-effect d log P50/d pH for Hb and Im Hb are close to each other in the pH range 7.1-7.4. It is possible that the effect of the micro-environment of carboxylic CP on immobilized Hb and its polyfunctional interaction represents the interaction between Hb and the structural elements inside the red cell [99]. [Pg.37]

The interaction with myosin motors enables F-actin to transport molecules as well as to change or maintain the shape of the cell by exerting tension. Thus, myosin-I motors move to the barbed end and can transport cargoes such as vesicles. When immobilized at the cargo site... [Pg.415]


See other pages where Immobilization interactions is mentioned: [Pg.118]    [Pg.58]    [Pg.2158]    [Pg.279]    [Pg.118]    [Pg.58]    [Pg.2158]    [Pg.279]    [Pg.2828]    [Pg.18]    [Pg.57]    [Pg.63]    [Pg.201]    [Pg.29]    [Pg.29]    [Pg.29]    [Pg.490]    [Pg.491]    [Pg.502]    [Pg.2063]    [Pg.124]    [Pg.254]    [Pg.323]    [Pg.348]    [Pg.361]    [Pg.364]    [Pg.164]    [Pg.546]    [Pg.554]    [Pg.126]    [Pg.270]    [Pg.84]    [Pg.4]    [Pg.35]    [Pg.36]    [Pg.390]    [Pg.46]    [Pg.68]    [Pg.247]   
See also in sourсe #XX -- [ Pg.34 , Pg.39 , Pg.45 , Pg.47 ]




SEARCH



Antibody immobilization strategies biotin- avidine interaction

Biotin- avidine interaction for antibody immobilization

Covalent interaction-based immobilization

Covalent interaction-based immobilization procedures

Enantioselective electrostatic interactions, immobilization

Immobilization by Ionic Interaction

Immobilization of Organocatalysts through Electrostatic Interaction with Ionic Fragments

Immunoactive elements, immobilization non-covalent interaction

Non-covalent interaction-based immobilization

Non-covalent interaction-based immobilization procedures

Particle interactions immobile liquids

Protein-surface interactions immobilization

Protein-surface interactions immobilized proteins/enzymes

Surface Electrode Reaction Involving Interactions Between Immobilized Species

© 2024 chempedia.info