Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immiscible blends properties

Sulfonation has been used to change some characteristics of blends. Poly(2,6-diphenyl-l,4-phenylene oxide) and polystyrene are immiscible. However, when the polymers were functionalized by sulfonation, even though they remained immiscible when blended, the functionalization increased interfacial interactions and resulted in improved properties (65). In the case of DMPPO and poly(ethyl acrylate) the originally immiscible blends showed increased miscibility with sulfonation (66). [Pg.330]

Tables 5 and 6 summarize key properties and appHcations for miscible and immiscible blends which are either commercial as of 1996 or were commercialized in the past (2,314—316,342,343). Most of the Hsted blends contain only two primary components, although many are compatibiLized and impact-modified. Consequently, an immiscible system consisting of two primary components or phases may contain impact modifiers for each phase and a compatihilizer copolymer, for a total of five or more components. Tables 5 and 6 summarize key properties and appHcations for miscible and immiscible blends which are either commercial as of 1996 or were commercialized in the past (2,314—316,342,343). Most of the Hsted blends contain only two primary components, although many are compatibiLized and impact-modified. Consequently, an immiscible system consisting of two primary components or phases may contain impact modifiers for each phase and a compatihilizer copolymer, for a total of five or more components.
Immiscible Blends. When two polymers are blended, the most common result is a two-phase composite. The most interesting blends have good adhesion between the phases, either naturally or with the help of an additive. The barrier properties of an immiscible blend depend on the permeabihties of the polymers, the volume fraction of each, phase continuity, and the aspect ratio of the discontinuous phase. Phase continuity refers to which phase is continuous in the composite. Continuous for barrier appHcations means that a phase connects the two surfaces of the composite. Typically, only one of the two polymer phases is continuous, with the other polymer phase existing as islands. It is possible to have both polymers be continuous. [Pg.496]

The two generic terms found in the blend literature are compatibility and miscibility. Components that resist gross phase segregation and/or give desirable blend properties are frequently said to have a degree of compatibility even though in a thermodynamic sense they are not miscible. In the case of immiscible systems, the overall physicomechanical behavior depends critically... [Pg.667]

The important factors that affect the rubber toughening are (1) interfacial adhesion, (2) nature of the matrix, (3) concentration of the rubber phase, and (4) shape and size of the rubber particles. In the PS-XNBR blend containing OPS, due to the reaction between oxazoline groups of OPS and carboxylic groups of XNBR, the interfacial adhesion increases and as a result, the minor rubber phase becomes more dispersed. The immiscible blend needs an optimum interfacial adhesion and particle size for maximum impact property. In PS-XNBR, a very small concentration of OPS provides this optimum interfacial adhesion and particle size. The interfacial adhesion beyond this point does not necessarily result in further toughening. [Pg.673]

Though both miscible and immiscible blends are composite materials, their properties are very different. A miscible blend will exhibit a single glass transition temperature that is intermediate between those of the individual polymers. In addition, the physical properties of the blends will also exhibit this intermediate behavior. Immiscible blends, on the other hand, still contain discrete phases of both polymers. This means that they have two glass transition temperatures and that each represents one of the two components of the blend. (A caveat must be added here in that two materials that are immiscible with very small domain sizes will also show a single, intermediate value for Tg.) In addition, the physical properties... [Pg.206]

In this chapter we have discussed the thermodynamic formation of blends and their behavior. Both miscible and immiscible blends can be created to provide a balance of physical properties based on the individual polymers. The appropriate choice of the blend components can create polymeric materials with excellent properties. On the down side, their manufacture can be rather tricky due to rheological and thermodynamic considerations. In addition, they can experience issues with stability after manufacture due to phase segregation and phase growth. Despite these complications, they offer polymer engineers and material scientists a broad array of materials to meet many demanding application needs. [Pg.211]

The effect of blending LDPE with EVA or a styrene-isoprene block copolymer was investigated (178). The properties (thermal expansion coefficient. Young s modulus, thermal conductivity) of the foamed blends usually lie between the limits of the foamed constituents, although the relationship between property and blend content is not always linear. The reasons must he in the microstructure most polymer pairs are immiscible, but some such as PS/polyphenylene oxide (PPO) are miscible. Eor the immiscible blends, the majority phase tends to be continuous, but the form of the minor phase can vary. Blends of EVA and metallocene catalysed ethylene-octene copolymer have different morphologies depending on the EVA content (5). With 25% EVA, the EVA phase appears as fine spherical inclusions in the LDPE matrix. The results of these experiments on polymer films will apply to foams made from the same polymers. [Pg.4]

As noted, immiscible blends can exhibit different properties. If the domains are of sufficient size, they may exhibit their own Tg and I m values. Many commercially used immiscible blends have two separate Tg and/or values. [Pg.222]

Blends are physical mixtures of polymers. Depending on the extent and type of blend the properties may be characteristic of each blend member or may be some blend of properties. Immiscible blends are phase-separated with the phases sometimes chemically connected. They are generally composed of a continuous and discontinuous phase. HIPS is an example of an immiscible blend. Miscible blends occur when the two blended materials are compatible. Often the properties are a mixture of the two blended materials. The plastic automotive panels and bumpers are generally made from a miscible blend of PE and a copolymer of PE and PP. [Pg.233]

As previously shown for PPE/SAN blends, the foaming behavior of immiscible blend systems is affected by both the properties of the blend phases and the overall blend structure [1], In the present blend system, the viscosity of one specific blend phase is varied as a result, not only the foaming behavior of the blend phase is altered but also the microstructure of the blend is affected [94]. By investigating blend systems with constant PPE to PS ratios of 75/25 and 50/50, and varying the SAN content in the range of 20-40 wt%, the influence of both the microstructure and the viscosity ratio can be analyzed (Table 3). [Pg.231]

Ruckdaschel H, Rausch J, Sandler JKW, Altstadt V, Schmalz H, Muller AHE (2008) Correlation of the melt rheological properties with the foaming behavior of immiscible blends of poly(2,6-dimethyl-l,4-phenylene ether) and poly (styrene-co-acrylonitrile). Polym Eng Sci 48 2111-2125... [Pg.250]

Poly(glycolic acid) and poly(3-HB) form immiscible blends with poly(e-CL). Poly(3-HB) is an expensive polymer, which crystallizes slowly from the melts and embrittles on ageing. Poly(e-CL), on the other hand, has a low mp and limited use. An optimal combination of cost and properties may be obtained by blending [114]. [Pg.29]

The use of copolymers as surfactants is widespread in macromolecular chemistry in order to compatibilize immiscible blends. These additives are sometimes named surfactants , interfacial agents or more usually compatibi-lizers . Their effect on improving different properties is observed interfacial tension and domain size decrease, while there is an increase in adhesion between the two phases and a post-mixing morphology stabilization (coalescence prevention). The aim of the addition of such copolymers is to obtain thermodynamically stable blends, but the influence of kinetic parameters has to be kept in mind as long as they have to be mastered to reach the equilibrium. Introducing a copolymer can be achieved either by addition of a pre-synthesized copolymer or by in-situ surfactant synthesis via a fitted re-... [Pg.118]

Over the last decade, the poor economics of new polymer and copolymer production and the need for new materials whose performance/ cost ratios can be closely matched to specific applications have forced polymer researchers to seriously consider purely physical polymer blend systems. This approach has been comparatively slow to develop, however, because most physical blends of different high molecular weight polymers prove to be immiscible. That is, when mixed together, the blend components are likely to separate into phases containing predominantly their own kind. This characteristic, combined with the often low physical attraction forces across the immiscible phase boundaries, usually causes immiscible blend systems to have poorer mechanical properties than could be achieved by the copolymerization route. Despite this difficulty a number of physical blend systems have been commercialized, and some of these are discussed in a later section. Also, the level of technical activity in the physical blend area remains high, as indicated by the number of reviews published recently (1-10). [Pg.311]

Although the number of miscible blends is rapidly being increased, immiscibility is generally the result when unlike polymers are mixed. Consequently, a great deal of research has been and is being done on ways to improve the mechanical properties of immiscible blends. A widely practiced approach at the present time is to connect the minor dispersed phase to the major continuous phase through a covalent bond. This approach can take several forms. The oldest and most basic is to... [Pg.311]

Leaving aside for the moment the relative advantages of immiscible vs. miscible blend systems, it is clear from the brief review above that the blend properties are strongly dependent on their phase structures and on the adhesion between phases. The presence and composition of phases as well as the surface energy of interaction between phases are, in principle, functions of the thermodynamics of interaction between the polymer components of the blend. Consequently, there is a need to be able to predict this interaction. [Pg.313]

In the field of thermoplastic immiscible blends, the emulsifying activity of block copolymers has been widely used to solve the usual problem of large immiscibility associated with high interfacial tension, poor adhesion and resulting in poor mechanical properties. An immiscible thermoplastic blend A/B can actually be compatibilised by adding a diblock copolymer, poly(A-b-B) whose segments are chemically identical to the dissimilar homopolymers, or poly(X-b-Y) in which each block is chemically different but thermodynamically miscible with one of the blend component. Theoretical... [Pg.98]

Blend morphology commonly depends on the weight fraction and viscoelastic properties of each component, the interfacial tension between components, the shape and sizes of the discontinuous phase, and the fabrication conditions and setup. Most rheological experiments applied to homogeneous melts can also be similarly applied to these immiscible blends [55,63,88,89]. The viscoelastic properties arising from these studies should be labeled with a subscript apparent since the equations used to translate rheometer transducer responses to properties incorrectly assume that the material is homogeneous. Nevertheless, these apparent properties are often found to be excellent metrics of fabrication performance. [Pg.295]


See other pages where Immiscible blends properties is mentioned: [Pg.640]    [Pg.640]    [Pg.415]    [Pg.415]    [Pg.423]    [Pg.589]    [Pg.633]    [Pg.667]    [Pg.207]    [Pg.207]    [Pg.207]    [Pg.666]    [Pg.136]    [Pg.415]    [Pg.415]    [Pg.423]    [Pg.207]    [Pg.208]    [Pg.214]    [Pg.216]    [Pg.217]    [Pg.245]    [Pg.125]    [Pg.71]    [Pg.114]    [Pg.312]    [Pg.312]    [Pg.439]   
See also in sourсe #XX -- [ Pg.546 , Pg.547 , Pg.548 ]




SEARCH



Blends properties

Immiscibility

Immiscibility Immiscible

Immiscible

Immiscible blend

Immiscible blends, properties failure

Immiscible blends, properties modulus

Immiscible blends, properties processing

Immiscible elastomer blends properties

© 2024 chempedia.info