Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immiscibility limit

Fall, D. J., J. L. Fall, and K. D. Luks. 1985. Liquid-liquid-vapor immiscibility limits in carbon dioxide -I- n-paraffin mixtures. J. Chem. Eng. Data 30 82. [Pg.524]

Other solubilization and partitioning phenomena are important, both within the context of microemulsions and in the absence of added immiscible solvent. In regular micellar solutions, micelles promote the solubility of many compounds otherwise insoluble in water. The amount of chemical component solubilized in a micellar solution will, typically, be much smaller than can be accommodated in microemulsion fonnation, such as when only a few molecules per micelle are solubilized. Such limited solubilization is nevertheless quite useful. The incoriDoration of minor quantities of pyrene and related optical probes into micelles are a key to the use of fluorescence depolarization in quantifying micellar aggregation numbers and micellar microviscosities [48]. Micellar solubilization makes it possible to measure acid-base or electrochemical properties of compounds otherwise insoluble in aqueous solution. Micellar solubilization facilitates micellar catalysis (see section C2.3.10) and emulsion polymerization (see section C2.3.12). On the other hand, there are untoward effects of micellar solubilization in practical applications of surfactants. Wlren one has a multiphase... [Pg.2592]

Steam Distillation. Distillation of a Pair of Immiscible Liquids. Steam distillation is a method for the isolation and purification of substances. It is applicable to liquids which are usually regarded as completely immiscible or to liquids which are miscible to only a very limited extent. In the following discussion it will be assumed that the liquids are completely immiscible. The saturated vapours of such completely immiscible liquids follow Dalton s law of partial pressures (1801), which may be stated when two or more gases or vapoms which do not react chemically with one another are mixed at constant temperature each gas exerts the same pressure as if it alone were present and that... [Pg.12]

In Chapter 7 we examined several methods for separating an analyte from potential interferents. For example, in a liquid-liquid extraction the analyte and interferent are initially present in a single liquid phase. A second, immiscible liquid phase is introduced, and the two phases are thoroughly mixed by shaking. During this process the analyte and interferents partition themselves between the two phases to different extents, affecting their separation. Despite the power of these separation techniques, there are some significant limitations. [Pg.544]

A key feature of encapsulation processes (Figs. 4a and 5) is that the reagents for the interfacial polymerisation reaction responsible for shell formation are present in two mutually immiscible Hquids. They must diffuse to the interface in order to react. Once reaction is initiated, the capsule shell that forms becomes a barrier to diffusion and ultimately begins to limit the rate of the interfacial polymerisation reaction. This, in turn, influences morphology and uniformity of thickness of the capsule shell. Kinetic analyses of the process have been pubHshed (12). A drawback to the technology for some apphcations is that aggressive or highly reactive molecules must be dissolved in the core material in order to produce microcapsules. Such molecules can react with sensitive core materials. [Pg.320]

The chemical propjerties of the contaminants have to be considered when selecting separation techniques. Some of the liquids are absolutely immiscible in water, and if the process stream involves water and the contamination is liquid/liquid, then the separation technique can greatly reduce the volume of contaminated water. For example, if acetone is the contaminant of concern, a simple vap>or stripping technique can be effective in making a separation. In the case of refined oil, which has a solubility limit of approximately 50 ppm, one of the oil/water separation techniques could be effective. Some general guidelines to consider are ... [Pg.172]

When the products are partially or totally miscible in the ionic phase, separation is much more complicated (Table 5.3-2, cases c-e). One advantageous option can be to perform the reaction in one single phase, thus avoiding diffusional limitation, and to separate the products in a further step by extraction. Such technology has already been demonstrated for aqueous biphasic systems. This is the case for the palladium-catalyzed telomerization of butadiene with water, developed by Kuraray, which uses a sulfolane/water mixture as the solvent [17]. The products are soluble in water, which is also the nucleophile. The high-boiling by-products are extracted with a solvent (such as hexane) that is immiscible in the polar phase. This method... [Pg.264]

Case II. ai3 > oti2- In this case, the tie lines slope toward the 1-3 binary line. This could have been intuitively predicted by considering the limiting case of an immiscibility band across the phase diagram, as shown in Fig. 31C. Of necessity, the tie lines become parallel to either the 1-3 or the 2-3 binary lines in the limit of pure 1-3 binary or pure 2-3 binary, respectively. [Pg.201]

In certain cases the organic dibasic acid is not sufficiently reactive for the purpose of polymerisation, and so it is replaced either with its anhydride or its acid chloride. For example polyamides (nylons) are often prepared by reaction of the acid chloride with the appropriate diamine. In the spectacular laboratory prepatation of nylon 6,6 this is done by interfacial polymerisation. Hexamethylenediamine is dissolved in water and adipyl chloride in a chlorinated solvent such as tetrachloromethane. The two liquids are added to the same beaker where they form two essentially immiscible layers. At the interface, however, there is limited miscibility and nylon 6,6 of good molar mass forms. It can then be continuously removed by pulling out the interface. [Pg.36]

Liquid-liquid extraction (also called solvent extraction) is the transfer of a substance (a consolute) dissolved in one liquid to a second liquid (the solvent) that is immiscible with the first liquid or miscible to a very limited degree. This operation is commonly used in fine chemicals manufacture (I) to wash out impurities from a contaminated solution to a solvent in order to obtain a pure solution (raffinate) from which the pure substance will be isolated, and (2) to pull out a desired substance from a contaminated liquid into the solvent leaving impurities in the first liquid. The former operation is typically employed when an organic phase is to be depleted from impurities which are soluble in acidic, alkaline, or neutral aqueous solutions Water or a diluted aqueous solution is then used as the solvent. The pure raffinate is then appropriately processed (e.g. by distillation) to isolate the desired consolute. In the latter version of extraction impurities remain in the first phase. The extract that has become rich in the desired consolute is then appropriately processed to isolate the consolute. Extraction can also be used to fractionate multiple consolutes. [Pg.252]

In the sections above, only infinite planar interfaces between air and an aqueous phase or two immiscible liquids like water and DCE were considered. Reducing the question to this class of surfaces only would be a severe limitation in the scope of the review as more reports appear in the literature debating on the SH response from small centro-symmetrical particles [107-110]. It is the purpose of this section to discuss the SHG response from interfaces having a radius of curvature of the order of the wavelength of light. [Pg.154]

The treatment of the two-phase SECM problem applicable to immiscible liquid-liquid systems, requires a consideration of mass transfer in both liquid phases, unless conditions are selected so that the phase that does not contain the tip (denoted as phase 2 throughout this chapter) can be assumed to be maintained at a constant composition. Many SECM experiments on liquid-liquid interfaces have therefore employed much higher concentrations of the reactant of interest in phase 2 compared to the phase containing the tip (phase 1), so that depletion and diffusional effects in phase 2 can be eliminated [18,47,48]. This has the advantage that simpler theoretical treatments can be used, but places obvious limitations on the range of conditions under which reactions can be studied. In this section we review SECM theory appropriate to liquid-liquid interfaces at the full level where there are no restrictions on either the concentrations or diffusion coefficients of the reactants in the two phases. Specific attention is given to SECM feedback [49] and SECMIT [9], which represent the most widely used modes of operation. The extension of the models described to other techniques, such as DPSC, is relatively straightforward. [Pg.296]

Some guidelines for predicting the results from distributing a sample between two immiscible solvents are summarized in Table 8.3 [67,68]. The efficiency of an extracting solvent, E, depends primarily on the affinity of the solute for the extracting solvent, Kd) the phase ratio, V, and the number of extractions, n. For simple batchwlse extractions K, should be l u ge, as there is a practical limit to the volume of the extracting solvent and the... [Pg.891]

High selectivity (i.e. the ability to separate analytes from matrix interferences) is one of the most powerful aspects of SPE. This highly selective nature of SPE is based on the extraction sorbent chemistry, on the great variety of possible sorbent/solvent combinations to effect highly selective extractions (more limited in LLE where immiscible liquids are needed) and on the choice of SPE operating modes. Consequently, SPE solves many of the most demanding sample preparation problems. [Pg.125]

DNAPLs have higher densities than water, most between 1 and 2 g/mL, some are near 3 g/mL, for example, bromoform, which has a density of 2.89 g/mL. They have limited water solubilities, and are usually found as the free-phase immiscible with water or as residuals trapped by soil. Most DNAPLs are volatile or semivolatile Pankow82 has listed information on their physical and chemical properties, such as molecular weight, density, boiling points, solubility in water, vapor pressure, sediment/water partition coefficient, viscosity, Henry s law constant, and so on (see Tables 18.8 and 18.9). [Pg.745]

Immiscible-phase separation Transformation Processes No Fluids (such as gasoline) that are immiscible in water are a significant consideration in near-surface contamination. Deep-well injection is limited to wastestreams that are soluble in water. Well blowout from gaseous carbon dioxide formation is an example of this process that is distinct to the deep-well environment. [Pg.793]

Large-scale ultrasonic irradiation is extant technology. Liquid processing rates of 200 liters/minute are routinely accessible from a variety of modular, in-line designs with acoustic power of several kW per unit (83). The industrial uses of these units include (1) degassing of liquids, (2) dispersion of solids into liquids, (3) emulsification of immiscible liquids, and (4) large-scale cell disruption (74). While these units are of limited use for most laboratory research, they are of potential importance in eventual industrial application of sonochemical reactions. [Pg.87]


See other pages where Immiscibility limit is mentioned: [Pg.268]    [Pg.31]    [Pg.268]    [Pg.54]    [Pg.82]    [Pg.297]    [Pg.268]    [Pg.31]    [Pg.268]    [Pg.54]    [Pg.82]    [Pg.297]    [Pg.263]    [Pg.44]    [Pg.322]    [Pg.410]    [Pg.469]    [Pg.69]    [Pg.976]    [Pg.152]    [Pg.406]    [Pg.170]    [Pg.21]    [Pg.33]    [Pg.234]    [Pg.54]    [Pg.8]    [Pg.356]    [Pg.245]    [Pg.957]    [Pg.397]    [Pg.204]    [Pg.207]    [Pg.376]    [Pg.349]    [Pg.313]    [Pg.67]    [Pg.337]   
See also in sourсe #XX -- [ Pg.54 , Pg.158 ]




SEARCH



Immiscibility

Immiscibility Immiscible

Immiscible

© 2024 chempedia.info